AD-753 222 A REVIEW OF EXPERIMENTAL MEASUREMENT METHODS BASED ON GAS-PHASE CHEMILUMI-NESCENCE Arthur Fontijn, et al Purdue University Prepared for: Office of Naval Research November 1972 DISTRIBUTED BY: U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 # PROJECT SQUID TECHNICAL REPORT AC-12-PU # A REVIEW OF EXPERIMENTAL MEASUREMENT METHODS BASED ON GAS-PHASE CHEMILUMINESCENCE BY ARTHUR FONTIJN DAN GOLOMB JIMMIE A. HODGESON Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE Of Department of Commerce Springfile A 27151 PROJECT SOUID HEADQUARTERS JET PROPULSION CENTER SCHOOL OF MECHANICAL ENGINEERING: 1 "RDUE UNIVERSITY WEST LAFAYETTE, INDIANA **NOVEMBER 1972** Project SQUID is a cooperative program of basic research enteting to Jet Propulsion. It is sponsored by the Office of Naval Research and is administered by Purdue University through Contract N00014-67-A-0226-0005, NR-088-038. This document has been approved for public release and sale; its distribution is unlimited. | Unclassified | • | | | | | | |--|--|---|---|-----|--|--| | Security Classification | | | | | | | | DOCUME | ENT CONTROL DATA - R & | D | | | | | | (Security classification of title, holly of abattact i | التوارية التوارك التروي والمنطوع الشوان التواري والتواري | | بنونين شهرسوي بهيدسوسية الشهران يتورينس | | | | | ORIGINATING ACTIVITY (Comparate author) | | 20. REPORT SECURITY CLASSIFICATION | | | | | | Project SQUID
Jet Propulsion Center, Purdue Unive | reity | Unclassified | | | | | | | isicy | N/A | | | | | | West Lafayette, Indiana 47907 | | 11/7 | | | | | | S REPORT TITLE | | , . | - 101 | | | | | A Review of Experimental Measu | rement Methods Bas | ed on G | as-Pnase | | | | | Chemiluminescence | | | | | | | | | | <u> </u> | | | | | | 4 DESCRIPTIVE NOTES (Type of report and inclusive date
Bioluminescence, D. Hercules, J. Lee | ") To be published in | 4 tone (P | lenum Press. NV. 19 | 731 | | | | 8. AUTHOR(S) (First name, middle initial, last name) | and made occurred, Ed | 1000 | | | | | | | A !! | | | | | | | Arthur Fontijn, Dan Golomb, Jin | nmie A. Hodgeson | | | | | | | | | | | | | | | S REPORT DATE | 78. TOTAL NO OF | PAGES | 76. NO OF HEFS | | | | | September 1972 | 1 AV 43 | | 179 | | | | | SA. CONTRACT OR GRANT NO | SA. ORIGINATOR'S | REPORT NUN | (BER(5) | | | | | N00014-67-A-0226-0005 | į . | | | | | | | 6. PROJECT NO | AC-12 | -PU | | | | | | NR-098-038 | ł | | | | | | | c. | 9h. OTHER REPORT | 9h. OTHER REPORT NOIS) (Any other numbers that may be assigned this report) | | | | | | ď. | AeroChem | AeroChem TP-283 | | | | | | 10 DISTRIBUTION STATEMENT | | | | | | | | This document has been approved for | r public release and | sale; | | | | | | its distribution is | unlimited. | | | | | | | | | | | | | | Measurement methods based on gas-phase chemiluminescence have found extensive use in a wide variety of disciplines such as homogeneous and heterogeneous reaction kinetics, thermochemistry, gas dynamics, aeronomy, analytical chemistry and air pollution (source and ambient atmospheric monitoring). Chemiluminescence intensity measurements are used to determine reactant and/or product concentrations from which are derived rate coefficients, diffusion coefficients, densities, wall recombination coefficients and heats of formation. Such measurements also allow temperature determinations. Additionally, chemiluminescence flow visualization is used for the testing of mathematical flow models and the measurement of atmospheric mass transport. In this review the various methods and reactions are discussed in the context of their specific applications. DD FORM . 1473 II SUPPLEMENTARY HOTES N/A IS AUSTRACT Unclassified Security Classification Office of Naval Research Power Branch, Code 473 22217 Arlington, Virginia Unclassified | | Unclassified Security Classification | | | | | | | | |----|--------------------------------------|----------|------|-----------|------|-----|------|----------| | 14 | KEY WORDS | | ROLE | K A
WT | ROLF | w 1 | HOLF | * * | | | | <u> </u> | HOLL | - " - | 7021 | | | | | | Chemiluminescence | | | | | | | | | | Measurement Methods | | | | | | | | | | Reaction Kinetics | : | | | | | | | | | Thermochemistry | | | | | | | | | | Gas Dynamics | | | | | | | | | | Upper Atmosphere | • | ' | | | | | | | | Air Pollution | | - | | | | | | | | Analytical Chemistry | | | | | | | | | İ | <u> </u> | 2 | | | | | | | | | | | | | | | į | · | , | 1 | | | II | | | | | | | <u>L</u> | Unclassified Security Classification energy of the second TECHNICAL REPORT AC-12-PU ## PROJECT SQUID A COOPERATIVE PROGRAM OF FUNDAMENTAL RESEARCH AS RELATED TO JET PROPULSION OFFICE OF NAVAL RESEARCH, DEPARTMENT OF THE NAVY CONTRACT N00014-67-A-0226-0005, NR-098-038 A REVIEW OF EXPERIMENTAL MEASUREMENT METHODS BASED ON GAS-PHASE CHEMILUMINESCENCE by ARTHUR FONTIJN AEROCHEM RESEARCH LABORATORIES, INC. DAN GOLOMB AIR FORCE CAMBRIDGE RESEARCH LABORATORIES JIMMIE A. HODGESON ENVIRONMENTAL PROTECTION AGENCY November 1972 PROJECT SQUID HEADQUARTERS JET PROPULSION CENTER PURDUE UNIVERSITY WEST LAFAYETTE, INDIANA This document has been approved for public release and sale; its distribution is unlimited. 皿 ### **ABSTRACT** Measurement methods based on gas-phase chemiluminescence have found extensive use in a wide variety of disciplines such as homogeneous and heterogeneous reaction kinetics, thermochemistry, gas dynamics, aeronomy, analytical chemistry and air pollution (source and ambient atmospheric monitoring). Chemiluminescence intensity measurements are used to determine reactant and/or product concentrations from which are derived rate coefficients, diffusion coefficients, densities, wall recombination coefficients and heats of formation. Such measurements also allow temperature determinations. Additionally, chemiluminescence flow visualization is used for the testing of mathematical flow models and the measurement of atmospheric mass transport. In this review the various methods and reactions are discussed in the context of their specific applications. # A REVIEW OF EXPERIMENTAL MEASUREMENT METHODS BASED ON GAS-PHASE CHEMILUMINESCENCE | Arthur Fontijn
AeroChem Research Laboratories, Inc
Princeton, N.J. 08540 | P.O. Box 12, | |--|---------------------| | Dan Golomb
Air Force Cambridge Research Labora
Field, Bedford, Mass. 01730 | itories, L.G. Hansc | Jimmie A. Hodgeson Environmental Protection Agency, Technical Center, Research Triangle Park, N.C. 27711 | I. | INTRODUCTION | 2 | |------|--|----------------| | II. | LABORATORY METHODS | 3 | | | A. Elementary Processes at Moderate Temperatures B. Flame and Shock Tube Studies C. Flow Visualization and Supersonic Flow Studies | 3
8
12 | | III. | MONITORING OF AIR POLLUTANTS | 13 | | | A. Ozone B. Nitrogen Oxides, Ammonia and Amines C. Sulfur Compounds D. Carbon Monoxide and Phosphorus, Boron, Chlorine Compounds | 14
15
17 | | IV. | UPPER ATMOSPHERE APPLICATIONS | 20 | | | A. Artificial Chemiluminescence
B. Natural Chemiluminescence (Airglow) | 20
24 | | ٧. | EPILOGUE | 26 | | | REFERENCES | 27 | This work was sponsored by Project SQUID, which is supported by the U.S. Office of Naval Research, Department of the Navy, under Contract NOOO14-67-A-0226-0005, NR-098-038. #### I. INTRODUCTION The first application of gas-phase chemiluminescence could have been the contribution to the illumination of a cave by the blue portion of a wood flame. Qualitative flame analysis has been in use since at least the 16th Century. 1 For many present-day applications, observation of chemiluminescence has the advantages that (i) measurement of such radiation in no way interferes with the reacting environment, (ii) the measuring tool does not have to be exposed directly to the active reaction environment, i.e. remote sensing is possible, (iii) transient species can be readily identified and (iv) in its most elementary form the observer's eye is the only tool required. For these reasons chemiluminescence measurements represent an obvious and often immediately available method for investigating a given medium. When coupled with modern reliable sensitive detection methods, which cover the optical spectrum from the vacuum ultraviolet through the near infrared, chemiluminescence provides a major tool for species concentration measurements. Chemiluminescence measurements are also used in studies of homogeneous reaction kinetics, thermochemistry, gas-surface interactions, temperatures of reaction environments, atmospheric mass transport, and gas dynamics. It is the purpose of the present paper to summarize these various methods and to discuss them in the context of the environments to which they have been applied, in the expectation that such a juxtaposition of knowledge from different disciplines and research areas can lead to further useful developments based on chemiluminescence. While many examples pertaining to specific species and reactions will be given, these are not intended to include all such observations but rather to illustrate the methods being discussed. To further delineate the
scope of this review, two definitions are in order (i) chemiluminescence is the emission of radiation from a chemi-excited species and (ii) chemi-excitation is a process by which excited species are formed as a direct result of the formation of new chemical bonds. Thus radiation following collisional excitation (e.g. A + B + kinetic energy → A + B*)--a principal radiation source in high temperature reaction environments, or dissociative reactions (e.g. $AB^T + e^T - A^* + B$), or radiation resulting from charged species impact or the absorption of radiant energy (e.g. fluorescence) will not be considered. Emphasis is placed on optical emission measurement methods which are specifically based on chemiluminescence. From the above definition a formalized description of chemiluminescence may be written as: $$A + B \stackrel{(M)}{-} C^* + D$$ (1) $$C* + C + h\nu \tag{2}$$ By virtue of the implied occurrence of a chemical reaction chemiluminescence measurements thus often have the important characteristic that the species being observed is a reaction product and not a reactant. However, since processes such as $$A + B + C \stackrel{(M)}{\longrightarrow} AB + C^*$$ (3) followed by light emission are also examples of chemiluminescence this does not always apply. In reactions such as (3) C* may be formed directly in an excited state or be excited by collisions with AB*. We will refer to the latter case as indirect chemiluminescence. Chemiluminescence measurement methods have found their widest variety of uses in the laboratory. Most methods for applied usage have been derived from laboratory methods and more such methods await application. Laboratory methods and their limitations are discussed in Section II. The newest, most rapidly growing field of gas-phase chemiluminescence application is pollutant monitoring. Air or exhaust gases are continuously sampled and the concentration of a selected pollutant is determined from the intensity of the chemiluminescence produced by its reaction inside a monitor; these methods are discussed in Section III. Releases of chemical tracers leading to artificial upper atmospheric chemiluminescence are a very practical, relatively inexpensive means for studying that environments the status of this area and that of natural airglows is reviewed in Section IV. # II. LABORATORY METHODS #### A. Elementary Processes at Moderate Temperatures Chemiluminescence is a widely used indicator in titration reactions of many atomic and free radical species in tubular fast-flow reactors. Such reactors have been used mainly in the 200 to 750 K regime. (For a description of their use see e.g. Refs. 2-4.) The technique may be illustrated by the air afterglow reaction:^{2,5} Indicator Reaction $$O + NO + M + NO_2 + M + h\nu$$ (4) O atoms at a fixed point in the reactor are titrated by addition of NO_2 via the fast reaction $$\frac{\text{Titration Reaction}}{\text{CO} + \text{NO}_2} - \text{NO} + \text{O}_2$$ (5) When the (volume) flow of NO_2 is less than that of the O atoms, NO is produced in the presence of O and the whitish-green glow from Reaction (4) is observed. However, when the flow of NO_2 equals or exceeds that of O no O atoms are present downstream from the NO_2 inlet and the glow contracts to the small mixing region surrounding the nozzle. The important requirement for a titration reaction is that it be fast and complete near the titrant inlet. The indicator reaction should be slow so that it can be observed downstream from the inlet. Other methods besides chemiluminescence can be used to follow the titration reaction, e.g. mass spectrometric determination of the NO₂-consumption plateau⁶ and E.P.R. or optical absorption measurements of the O-atom disappearance. These methods have confirmed the validity of the chemiluminescence measurements but generally require a more elaborate experimental set-up. It is useful to keep in mind that in the sequence of Reactions (5) and (4) chemiluminescence is used as the indicator reaction not as the titration reaction, contrary to an unfortunately rather common misuse of terms. Indicator reactions are also used to measure the change in reactant concentration with time obtained from the distance along the reactor and the average gas velocity. If a trace of NO is present in or added to an atomic-O flow, the relative intensity of the air afterglow is a measure of the relative [O], since the combination of Reactions (4) and (5) results in recycling of NO and hence a constant [NO]. Examples of quantitative kinetic studies in which the O-atom consumption rate has been determined in this manner include $$0 + NO + M \rightarrow NO_2 + M$$ (6) see e.g. Refs. 2,5 $0 + O_2 + M \rightarrow O_3 + M$ (7) see e.g. Refs. 2,5,9 $0 + SO + M \rightarrow SO_2 + M$ (8) Refs. 10, 11 $0 + C_X H_Y \rightarrow Products$ (9) see e.g. Refs. 12-14 $0 + XCN \rightarrow NCO + X$ (10) Ref. 15 in which X=H, Cl, Br. While consumption of NO by free radicals does not seem to have interfered with measurements in O/hydrocarbon systems (Reaction 9), NO is known¹⁶ to be a very efficient free radical scavenger and some caution in the use of the air afterglow in such a reaction system is necessary. Reactions (8) and (10) serve to illustrate uses of chemiluminescence in the measurement of free radicals and reaction products. Reaction (8) is accompanied by emission of the SO_2 afterglow $$0 + SO + M + SO_2 + M + h\nu \tag{11}$$ A STANDARD ST By simultaneously measuring the relative intensities of both the O/NO and O/SO afterglows a measure of the consumption of both O and SO is obtained. 10,11 Reaction (10) is followed by: $$0 + NCO \rightarrow NO + CO , \qquad (12)$$ i.e. by NC production. By adding known small flows of NO to the O/XCN mixture and plotting the air afterglow intensity versus NO flow, a negative intercept on the abcissa (NO flow axis) is obtained, the magnitude of which directly yields the NO-production rate. 15 Absolute concentrations can also be obtained from the relative air afterglow intensity. This requires that the detector (photomultiplier plus light filter or monochromator) output be calibrated in terms of [O][NO] for a given reactor detector geometry and that the absolute concentration of one of these reactants be known. This approach has been found useful in static reactors in which the NO_2 titration because of its flow nature cannot be carried out, 17 in systems in which ground state O atoms are produced (such as by quenching of singlet excited O atoms) 18 and where flow metering of NO_2 is found to be inconvenient. Fontijn, Meyer and Schiff¹⁹ (FMS) have accurately measured the absolute rate coefficient for light emission of the air afterglow reaction, k, together with the spectral distribution of the glow, which is a continuum extending from 388 nm well into the infrared. This glow is commonly used as a secondary standard for absolute quantum yield determinations of light emitting processes in the gas phase. The relative intensity emitted in a given wavelength region by the investigated process need only be compared to that of the O/ NO reaction using the same conditions of geometry and optics. Fontijn and Lee²⁰ have extended such comparisons to the liquid phase and found good agreement with the common liquid-phase (luminoi oxidation) chemiluminescence light intensity standard. A check on k. by Vanpee et al21 also gave good agreement, but subsequent work on the spectral distribution²¹⁻²³ has shown deviation from the FMS data in the (infra)red, though excellent agreement exists for $\lambda \leq 650$ nm. For quantum yield measurements above 650 nm it would be best to use a combination of the FMS data below 650 nm with the more recent ir spectral distribution measurements. Stair and Kennealy²³ have shown the emission to extend to at least 3700 nm. Since the O/NO continuum does not extend below 388 nm, it cannot be used directly as a standard for that wavelength region. However, the quantum yields of other glows, which partially overlap the O/NO wavelength region, have been determined by comparison to the O/NO glow and can be used as secondary standards in the ultraviolet. In particular, the SO₂ afterglow continuum^{11,24} (Reaction 11) appears useful down to about 260 nm. Recently Mandelman, Carrington and Young²⁶ have accurately determined the absolute rate coefficient for N-atom/ O-atom pre-association leading to NO δ (O₂O) emission (Reaction 16. below) near 191 nm. No standard reactions at shorter wavelengths have yet been provided. The NO/O standard can be used directly in the 1 to 10 Torr regime, at 300 K, in an Ar or O_2 carrier. It must be remembered that the detailed reaction mechanism²⁵ involves participation of a third body, M, and that, as a result, the intensity depends on the nature of M and becomes [M]-dependent at lower pressures where quenching no longer competes successfully with emission. For the M-dependences of k_4 see Clyne and Thrush²⁷ and Kaufman and Kelsoj²⁸ for the temperature dependence see Hartunian, Thompson and Hewitt.²⁹ The reaction $$H + NO + M \rightarrow HNO + M + h\nu \tag{13}$$ gives rise to a banded HNO spectrum in the 600-800 nm region. The intensity of this emission is 30 proportional to [H][NO] and the reaction has been used in H-atom studies. The titration reaction for which (13) serves as the indicator is $$H + NO_2 \rightarrow OH + NO \tag{14}$$ Subsequent rapid reactions of OH regenerate H and as a result the ${\rm NO_2}$ end point flow is 1.5 times the initial H-atom flow. 6 , 31 Further examples of laboratory afterglow methods may be illustrated by the nitrogen, nitric oxide and oxygen afterglows. Absolute N-atom concentrations can be determined via titration^{7,8,32,33} with NO: $$N + NO \rightarrow N_2 + O \tag{15}$$ When an insufficient flow of NO is added to remove all N atoms a mixture of N and O atoms exists downstream from the NO inlet and the blue NO afterglow can be observed $^{34-37}$:
$$N + O \stackrel{(M)}{\rightarrow} NO + h\nu \tag{16}$$ nonderen andere Britanis de Militaria de Landers de la Caracia de Maria de Caracia de La Caracia de Caracia de n national designations of the properties of the properties of the properties of the contract of the properties p When the NO flow is in excess of the N-atom flow, the downstream gases contain O and NO and the air afterglow appears again. At the end point the tube visually appears dark. However, in the ultraviolet O_2 Herzberg bands and in the infrared O_2 Atmospheric bands, both due to³⁶⁻³⁹: $$0 + 0 + M \rightarrow C_2 + M + h\nu$$, (17) can still be observed. In the nitrogen afterglow itself several band systems, due to $^{36}, ^{37}, ^{40-44}$ $$N + N + M \rightarrow N_2 + K \sim h\nu \tag{18}$$ are observed, of which the yellow First Positive Bands are most commonly used for measurements. These bands and the NO β , γ and δ bands can be used to follow atom concentrations. The light intensities are proportional to $[N]^2$ and [N][0], respectively. For rate coefficient data and restrictions of pressure see the references quoted. The temperature dependences of k_{16} and k_{18} have been measured over a wide range by Gross and Cohen, 45,46 (see also Campbell and Thrush 34). The reader is ferred to review papers by Carrington and Garvin 47 and by Thrush 48 for the detailed mechanisms of Reactions (16) to (18), as well as of several further reactions which may have potential for practical applications e.g., the O/CO glow and the halogen atom recombination afterglows. The oxygen afterglow intensity from Reaction (17) is proportional to [0]2 and in principle can also be used for concentration measurements in O-atom reaction studies. However, both band systems are strongly forbidden (radiative lifetimes > 1 sec)37,38 and consequently have a low intensity. Moreover, even though quenching will reduce the effective lifetime of the emitters $(0_2 \text{ A}^3\Sigma_{ij}^{-1} \text{ and } \text{b}^3\Sigma_{ij}^{-1} \text{ respectively})$, the emission in flow tubes may occur well downstream from the point of emitter formation and the intensity then will no longer be a true indication of local [0]. Radiative lifetimes of the other emitters discussed above are on the order of 10⁻⁶ sec or less; since typical linear velocities in laboratory flow tubes are on the order of 102 to 104 cm sec-1 this transport problem does not arise in their use. However, care must also be exercised with short-lived emitters, for example in the use of the $I = [N]^2$ and = [N][O] relationships in mixtures containing a second reactant. In a few instances it has been shown that such reactants or a reaction intermediate can enhance afterglow intensities by catalytically increasing the rate of atom recombination into the emitting state. Thus, I2 addition can enhance the Lewis-Rayleigh afterglow intensity, 49 and C_2F_4 and C_2H_4 have been observed to increase the NO γ and $\beta(v' \le 2)$ intensities. 50 The NO β emission intensity also has been shown recently⁵¹ to be not strictly proportional to [N][O], due to N, O and O2 action on a precursor of the emitting B $^{2}\Pi$ state. For these reasons it appears safest to use the NO $\delta(v'=0)$ bands, whose emitter is produced directly by a twobody pre-association reaction 35,36 unlike the other emissions discussed above which are produced by three-body reactions. The nitrogen afterglow also offers several examples of the use of indirect chemiluminescence. $N_2(A^{3\Sigma}_u^{-1})$ molecules are formed via N-atom recombination but, due to their long radiative and short chemical lifetime, these excited molecules cannot normally be observed in emission. However, when a trace of Hg is added to the flow, rapid energy transfer occurs and the resulting 253.7 nm emission can be used to monitor $N_2(A^{3\Sigma}_u^{-1})$ and estimate its concentration. Other N_2^* species formed in the afterglow apparently do not excite the emitter, Hg(6 3P_1). CO($^3\Pi$) has been similarly monitored in various reaction mixtures i.e. by energy transfer to Hg and to NO(X $^2\Pi_2$), leading to Hg 253.7 nm and NO β and γ band emission, respectively. $^{53}_a$ Vibrationally excited ground-state N_2 molecules can also be formed in nitrogen afterglows. Addition of CO₂ leads to energy transfer and emission of the 4300 nm vibrational fundamental band of CO₂. Electronically excited species present do not produce this band. Similar observations have been made using N_2 0. Chemiluminescence from atom reactions has also been used to determine bond dissociation energies. The general spectroscopic methods for determining bond energies have been discussed by Gaydon. Sea Chemiluminescence is sometimes the preferred technique for producing clean interpretable spectra, for example in the determination of the lower limit to the BaO bond energy from the Ba + NO₂ chemiluminescence in a crossed beam experiment. Chemiluminescence measurements of changes in atom concentrations near catalytic surfaces have been employed to measure atom-surface recombination coefficients, $^{58-60}$ γ , the efficiency of catalytic probes in destroying free atoms and atomic diffusion coefficients, 58 , $^{61-63}$ Atom-surface interactions can also give rise to luminescent surface phenomena, i.e. to candoluminescence of lumophoric substances such as CaO and MgO. The intensity of the candoluminescence associated with the impingement of N and O atoms has enabled determinations of γ . $^{64-66}$ ## B. Flame and Shock Tube Studies Several self-sustaining flame types are known and are discussed in several texts, e.g. Gaydon and Wolfhard. 67 Of these premixed laminar flames are probably most widely used in presentday laboratory practice. In such flames reaction time and distance are (as in flow tubes) directly proportional to each other, which is an important advantage in (i) kinetic studies and (ii) all studies in which it is desirable to distinguish between flame zones. Two distinct major reaction zones are present in premixed flames: (i) the primary combustion zone characterized by wide departures from equilibrium and in many flames intense chemiluminescence and (ii) the burned gas zone in which equilibrium conditions are more closely approached and in which reactions of free radicals, etc., formed in the primary zone can readily be studied. Several of the atomic and radical species present in flames are identical to those discussed in the previous section and some of the same chemiluminescent reactions can be used in a similar manner. However, since flame environments usually contain a larger number of reactants. errors due to side reactions or overlapping emissions are more likely and considerable caution in the use of chemiluminescent emissions in measuring e.g. reactant-time profiles is needed. Moreover, as a consequence of the high temperature reaction environment represented by flames, emissions from other sources, particularly collisionally excited species, often dominate and background emissions may underlie some of the emissions being measured. Distinguishing between chemi-excitation and collisional excitation is sometimes difficult and may require extensive research. Both processes can contribute to the establishment of thermal equilibrium levels of excitation. However, in systems in which collisional excitation dominates the excitation cannot exceed equilibrium levels. Hence, non- or extra-equilibrium radiation (also referred to as "suprathermal" radiation) is usually chemiluminescent in origin. For general reviews of flame excitation processes, see, e.g. Alkemade and Zeegers^{68a} and Sugden. ⁶⁹ For general discussions of flame emission methods the reader is referred to Refs. 68-73. Extensive studies have been performed in the burned gases of $C_{\rm X}H_{\rm Y}/O_2$ and H_2/O_2 flames with or without added diluents. Little "natural" emission from these gases occurs in the uv and visible part of the spectrum; as a result emission due to additives can readily be studied. Chemiluminescence is the dominant emission mechanism at "low" temperatures, achieved e.g. by heavy admixture of diluent; increasing temperature favors collisional excitation. The definition of low temperature in this connection varies with excitation energy. Sugden et al⁷⁴ estimate that for excitation of 600 nm radiation, collisional effects predominate above 1900 K, while emissions at 300 nm become primarily collisional only at temperatures above 2300 K. † In these burned gas mixtures H, OH and O are the principal naturally-occurring radicals. H and OH are in equilibrium with each other via $$H + H_2O = H_2 + OH$$ (19) Since the equilibrium constant for this reaction and the $[H_2]$ and $[H_2O]$ at equilibrium are known, determination of the concentration of one of these reactants suffices for the determination of both. Padley and Sugden⁷⁶ added small quantities of Na to fuel-rich $H_2/O_2/N_2$ flames and monitored the Na D-line emission resulting from $$H + H + Na \rightarrow H_2 + Na^*$$ (20) The emission intensity is proportional to $[H]^2$; [H]-profiles thus obtained agree well with those observed by the CuH method. The latter can also be used at high temperatures and is based on the equilibrium $$Cu + H + M = CuH + M \qquad (21)$$ and the accompanying CuH (0,0) 428.8 nm emission. Rosenfeld⁷⁸ has used the Pb equivalent of Reaction (20) at temperatures down to 1350 K. The [H]-profiles obtained in such studies have made it possible to measure the heat of dissociation of a large number of metal oxides and hydroxides in flames. 56b , 69 It should be emphasized that Reaction (18) is a practical method for [H]-determination in O-atom lean flames. In O-rich flames the faster reaction $$0 + 0 + Na \rightarrow 0_2 + Na^*$$ (22) dominates. 79 This statement should not be construed to indicate that no chemiluminescence can be observed in flames
at high temperatures. For example, Bulewicz⁷⁵ has found strong indications that most visible and ultraviolet emission from the primary reaction zone of some subatmospheric C_2N_2/O_2 flames, in which temperatures in excess of 4000 K are obtained, is attributable to chemiluminescence. In addition to this type of kinetic/thermochemical study, the secondary reaction zone of premixed hydrocarbon or H2 flames is also widely used in emission flame spectrophotometry applied to analytical chemistry. This type of analysis generally yields no information on the kind of chemical compound being analyzed but rather on the elements present in these compounds. It is primarily a quantitative (and qualitative) analysis method for metallic compounds present in liquid samples which may be delivered to the flame by a variety of means (see Alkemade 70a for details). At the temperatures used the atomic line emissions observed are often the result of collisional excitation. However, chemiluminescence can be made to be the dominant metal atom excitation source using the other major burner type for this sort of work, the turbulent diffusion type burner. 703 Unlike premixed flames at atmospheric pressure where the primary reaction zone is very thin, in turbulent diffusion flames primary combustion reactions can occur over several cm. By using a C2H2 flame, or introducing the sample with an organic solvent into an H2 flame, intensity increases several orders of magnitude over the thermal equilibrium intensity have been obtained for many metallic lines. 60 This chemi-excitation is apparently related to the formation of the energetic (11.1 eV) CO bond, 68,722,80 which is also thought to be responsible for most of the prominent natural chemiluminescence features of organic flames, 81 i.e. CH, CHO, CO and OH. While not yet much exploited for quantitative analysis many emission bands of compounds formed in flames from metallic 69,82 and non-metallic 70b elements have been observed, many of which are probably chemiluminescent in origin (for a compendium of such emissions see Pearse and Gaydon⁶³). Examples of the utilization of such chemiluminescent emissions include measurements of gaseous samples of sulfur and phosphorus compounds with the Brody-Chaney H2/O2 flame In the class of photometers to which this device belongs, the secondary zone is chilled to reduce the background emission. 70b This is achieved by the use of a chimney (like a Smithsells separator). The Brody-Chaney instrument was originally developed as a detector for gas chromatographic analyses and has now also been applied to direct sampling of air pollutants (see further Section III). In flame kinetic studies the NO/O continuum (Reaction 4) is widely used to measure [O] and/or [NO].69,74 The uv-visible ($\lambda \ge 210 \text{ nm}$) CO/O continuum⁶⁸2373 is similarly used for |0 | and/oz | 00 | Chemiluminescence may also be used in a very different manner to determine concentrations of reaction intermediates or other unstable species in high temperature environments, i.e. by the use of chemical scavenger probes. In such continuous flow probes, the sampled gases are expanded adiabatically (or cooled otherwise) to freeze the composition. A scavenger gas is introduced immediately downstream from the sample inlet to form stable products which can then be analyzed. Fristrom and Westenberg⁶⁴ used the O/NO₂ titration (Reaction 5) in this manner to determine [0] from flame gases; although they used mass spectrometric detection, chemiluminescence could probably have been used equally well. This was in fact done for N atoms via the N/NO titration (Reaction 15) by Fontijn, Rosner and Kurzius⁶⁵ who sampled from a supersonic plasma jet. In shock tubes—the other major device for high temperature kinetic studies—a number of chemiluminescent reactions have been observed and used. The intensity of the uv O₂ Schumann-Runge system (B $^3\Sigma_u^-\text{-X}^3\Sigma_g^-$) due to the two-body radiative pre-association reaction $$0 + 0 \rightarrow 0_2 + h^{\nu}$$ (23) is proportional \$6,87\$ to $[0]^2$ and has been used to study C-atom reactions. Such pre-association reactions are of an endothermic nature. Reaction (23) has been used at temperatures above 2500 K where it leads to strong emission. By contrast, Reaction (17) which near room temperature gives rise to the weak Herzberg bands in the same wavelength region has (as a typical three-body reaction) a negative temperature dependence and contributes negligibly in high temperature environments. Wray and Fried using an atmospheric pressure are have demonstrated that the emission from (23) is a discrete spectrum and that the spectral distribution is in accord with equilibrium theory. The emission can therefore also be used to determine reaction temperatures. The B $^3\Sigma_u$ $^ X^3\Sigma_g$ emission from the S-atom equivalent of Reaction (23) $$S + S \rightarrow S_2 + h\nu \tag{24}$$ can be used in a similar manner for kinetic studies (and presumably for temperature determinations). The radiative association of ground-state chlorine atoms gives rise to emission from the ${\rm Cl}_2^{-1}\Pi_{\rm U}$ and ${}^3\Pi_{\rm O}^{-1}{\rm U}$ states, 92 which has been used to study the rate of ${\rm Cl}_2$ dissociation behind shock waves. Some other chemiluminescent reactions used in shock tube studies are the ${\rm CO}_2$ continuum, due to the ${\rm O}+{\rm CO}+{\rm M}$ reaction, for which ${\rm I}^{94}$ I ${\rm I}^{12}$ [O][CO], the OH 306.4 nm system, due to the O+H+[M] reaction, for which ${\rm I}^{95}$ I = [O][H] and other emissions typical of organic combustion reactions such as CH, CHO, C2, CO chemiluminescence. The latter emissions though not simply related to reactant concentrations have nonetheless proven quite helpful in unraveling combustion mechanisms in shock tubes and flames and atom reactions in flow tubes. In closing this section, mention should be made of the glow discharge shock tube. In this device a flow tube, such as discussed in Section II.A., is used in such a fashion that a shock wave can be fired through the glowing gas thus heating the gas mixture so that the temperature dependence of chemiluminescent reactions can be studied. The temperature range covered thus far with this apparatus is from about 300 to 3300 K. The temperature dependence of the rate coefficients of Reactions (4), (11), (16), and (18) and the CO/O glow have been determined in this manner. 29,45,46,96 #### C. Flow Visualization and Supersonic Flow Studies One of the implicit advantages of using transparent vessels in which to study reactions leading to chemiluminescence is that flow patterns can easily be observed, thereby verifying that good mixing and smooth laminar flow, required for many kinetic studies, is obtained. Flow visualization is also used in studying supersonic flows. In wind tunnel tests at pressures below a few Torr, Schlieren photography is no longer practical for obtaining density variations around fixed objects. There, chemiluminescence, particularly the nitrogen afterglow, has been found to be a very useful technique. The Nitrogen is subjected to an electrical discharge before expansion through a nozzle and the shock waves around objects can readily be photographed. The fluid dynamics of wakes and trails behind planetary atmospheric entry bodies has been studied in ground-based laboratories by shooting ≈ 1 cm diam spheres at ≈ 6 km sec⁻¹ through air at reduced pressures. Temperatures in the shock layers around these spheres are typically on the order of 6000-8000 K. As the gas expands around the body into the wake, its temperature decreases but its chemical composition relaxes relatively slowly, thus creating concentrations of atoms in excess of equilibrium and setting up conditions for chemiluminescence to occur. While the shock layer radiation is essentially thermal, the radiation from the wake is chemiluminescent in origin and consists of the O2 Schumann-Runge Bands (Reaction 23), the air afterglow NO2 continuum (Reaction 4), the NO β , γ and δ Bands, the O₂ Herzberg and Atmospheric Bands and the N₂ First Positive Bands (Reactions 16-18). The emissions and their intensities depend on the flux of chemically active species into the (turbulent) wakes (i.e. the mixing rates with ambient air), local temperatures and the rates of those reactions which deplete the chemically active species. Models describing the wake chemistry and fluid mechanics have been tested by comparing calculated emission properties with measured properties.98-100 Emission from the relatively hot near wake is dominated by the strongly temperaturedependent O2 Schumann-Runge Bands which last for several hundred body diameters. 99 At larger distances (the far wake) the O/NO air aftergiow reaction emission dominates and has been used for verifying models. 100 High speed entry bodies are subject to considerable heating and as a result, evaporation (ablation) from their surfaces occurs. The rate of such evaporation depends on the chemical composition of the body's exposed surface. Experimental studies have been performed to verify flow models taking into account large rates of evaporation ("messive blowing"). 101,102 Objects of various configurations have been placed in arc tunnels, with a stream of O atoms impinging upon them. The objects have a porous surface through which NO is injected. The streamlines separating the blown gas from the oncoming stream are readily visualized by emission from O/NO (Reaction 4). Upper-atmospheric NO releases 103 have been simulated in a low density wind tunnel. A free jet of NO is injected into a supersonic flow containing O atoms and the so-called headglow is generated. The O-atom flux is determined by titrating O with NO₂ (Reaction 5) until the headglow is extinguished. The measured headglow intensity at known reactant fluxes is used to analyze atmospheric releases (see Section IV.A.1). The known O-fluxes can also
be used to calibrate other upper atmospheric sampling devices such as mass spectrometers. 104 #### III. MONITORING OF AIR POLLUTANTS The first application of chemiluminescence to monitoring of an air pollutant—detection of atmospheric O_3 by (heterogeneous) chemiluminescence 105 —was reported more than a decade past. Active interest in chemiluminescence as a method for monitoring air pollution dates from about 1968 and at present chemiluminescence monitors for O_3 , SO_2 and oxides of nitrogen (NO, NO₂ and NO + NO₂ = NO_X) are being employed at a rapidly expanding rate. The majority of detectors in practical use are based on homogenhous gas-phase chemiluminescence. Two types of such detectors may be distinguished. The ambient temperature detector employs the chemiluminescent reaction between the small molecule of interest, X, in air or in the exhaust gas, and a second reactant species, R, which is added in excess to the flow reactor. For the reactions used, the intensity of the chemiluminescence is directly proportional to the product of reactant concentrations, I = k[R][X]. Since the second reactant gas is normally in large excess and its concentration is constant, I is directly proportional to sample concentration, I = k'[X]. In the other type of detector, chemiluminescence resulting from reactions between atomic or molecular fragments produced from primary molecules introduced into a flame is observed in the secondary combustion zone. Flame chemiluminescence methods are generally less specific than room temperature methods and are more applicable to the detection of classes of compounds, e.g. nitrogen or sulfur compounds. Chemiluminescence detectors have some common advantages and disadvantages for air pollutant monitoring. They inherently possess a high degree of sensitivity, specificity and simplicity. With the use of high gain, low dark current photomultiplier tubes, extremely low levels of chemiluminescent emission can be detected. Tracit concentrations are more readily detected in emission, in which a positive quantity is measured, than in absorption, in which concentration is proportional to a small differential quantity. In order for another molecule to be a positive interference in the chemiluminescence detection of X it must react with R, this reaction must produce chemiluminescence, and this chemiluminescence must overlap considerably with the spectral region in which X produces emission. Such interference would be a rare happenstance. A third body which quenches the excited state responsible for emission is a potential negative interference. In trace atmospheric detection, however, the predominant quenching agents are O_2 and N_2 , which do not vary in concentration. Chemiluminescence detectors can be simple, compact and constructed from commercially available components. The common components of the detectors include (i) the flow train--gas inlet system, flow meters, reaction chamber, and sample pump, and (ii) the electronics--a photomultiplier tube closely coupled to the reaction chamber through an optical filter (if needed), photomultiplier high voltage supply and amplifier and an analog read-out. A limitation of chemiluminescence detection is that not all pollutants participate in useable reactions. In common with all optical techniques absolute measurements are too difficult for routine use and instrument calibration is required. # A. Ozone Regener 05 developed the first practical chemiluminescence 03 detector, which has been applied in both upper and lower atmospheric measurements. In Regener's procedure, the chemiluminescence obtained from the reaction between O3 and Rhodamine-B adsorbed on activated silica gel is measured as function of $[0]_3$. The technique is specific and is the most sensitive method known for O3, with a lower limit of detection well below one part per billion (1 ppb). The Environmental Protection Agency (EPA) became interested in Regener's approach for routine detection of O3 in polluted atmospheres. Preliminary field studies were conducted in urban locations, 106 as a result of which preparation of the Rhodamine-B surface was modified to provide improved lifetime and stability. 107 The improved monitors have since shown excellent reliability in extended field studies 108 and form the basis for a commercially available monitor. The principal limitation of the Regener approach is the variable and slowly decaying sensitivity of the Rhodamine-B surface. An internal O₃ source is necessary to provide frequent, periodic calibrations of the surface and compensate for any sensitivity changes. Although the internal calibration source works satisfactorily, a Regener-type instrument is more complicated than the homogeneous gas-phase chemiluminescence analyzers discussed below which have shown better response characteristics in comparative studies. 109 المعافلات المعافلات والمخطوط والمقافلة والمعافلاة والمعافلاة والمعافلاة والمعافلات والمع In 1965, Nederbragt et ${\it al}^{110}$ published a note on the application of a homogeneous gas-phase chemiluminescence technique based on the atmospheric pressure chemiluminescent reaction between O₃ and C₂H₄. No information was available then on the mechanism of the reaction. The emission is a broad continuum centered near 435 nm and has been tentatively assigned to an excited aldehyde linkage (e.g. formaldehyde, glyoxal). 109,111 Scant attention was paid this technique until interest was revived by a 1970 investigation by Warren and Babcock. 112 Prototype detectors based on Nederbragt's concept were constructed and evaluated by EPA and were shown to have more than adequate sensitivity and specificity for ambient 03 measurements. 109 In addition, the simplicity of the detector implied that a low cost monitor could be made. The Nederbragt method has been so successful in laboratory and field applications that it has been designated as the reference method for the routine $\rm O_3$ measurements required by recent Federal air quality standards. Several instrument companies now offer commercial versions. Good agreement has been obtained between Regener and Nederbragt O3 monitors in extensive field studies. 108, 114-116 In such field tests atmospheric data are collected with a variety of prototype and commercial units to determine reliability of instrument performance (e.g. downtime, maintenance requirements) and stability of instrument operating parameters (e.g. zero drift, span drift) and to compare data from different types of instruments. The gas-phase chemiluminescent reaction between $\rm O_3$ and NO may be used for the detection of either component when the other is present in excess. For $\rm O_3$ measurement the characteristics are essentially equivalent to those of the Nederbragt detector. The reaction has been used almost exclusively for the measurement of NO and NO $_{\rm X}$ as discussed below. #### B. Nitrogen Oxides. Ammonia and Amines Although oxides of nitrogen (NO_X) play an important role in atmospheric pollution, methods of measuring NO_X were until recently the least satisfactory among various atmospheric monitoring techniques. Chemiluminescent reactions of NO_X have been adapted to fill this gap in measurement technology. The chemiluminescence system most frequently used is: $$\frac{\text{Energy}}{\text{NO}_2} \rightarrow \frac{\text{NO} + 1/2}{2} \text{ O}_2 \qquad (25)$$ $$NO + O_3 \rightarrow NO_2 + O_2 + h\nu (\lambda \ge 600 \text{ nm})$$ (26) Reaction (26) is a red-shifted ($\lambda \ge 600$ nm) modification of the air afterglow reaction (4). Applications of gas-phase chemiluminescent reactions for detection of oxides of nitrogen were first discussed and experimentally demonstrated by Fontijn et al¹¹⁷ at AeroJhem under an EPA THE PROPERTY OF A STATE OF THE PROPERTY contract. They subsequently constructed a prototype chemiluminescence NO monitor based on the NO-O $_3$ reaction. Sample air containing NO mixes with excess O $_3$ (0.5% in O $_2$ from an internal O $_3$ source) in a reactor cell, which is maintained at a total pressure of approximately 2 Torr with a small mechanical pump. A thermoelectrically-cooled, infrared sensitive photomultiplier (e.g. EMI-9558A) and a filter cutting off radiation below 600 nm are closely coupled to the reactor vessel. The limit of sensitivity is approximately 0.002 ppm and the linear range of response extends up to 1000 ppm. Fontijn's prototype instrument, which is typical of many of the later commercial models, has been evaluated and compared with other NO $_{\rm X}$ instruments in extended field studies. 114-116 The application of the chemiluminescent NO/O $_3$ reaction has occupied several other investigators. Prototype chemiluminescence NO monitors suitable for source and ambient measurements were developed independently at Ford Research Laboratories. 19 $_3$ 120 The chemiluminescence NO monitor has in fact proved to be an ideal method for measuring NO $_x$ in automotive exhausts. This technique is now specified by EPA as the test procedure for NO $_x$ analytical measurements in determing whether vehicular emissions meet published standards. Recently a chemiluminescence NO/O $_3$ detector which operates at atmospheric pressure was demonstrated. Sensitivity for ambient concentrations (O.OOI-I ppm) was achieved by changing reactor geometry and sample flow conditions. This development has led to more compact and less costly detectors. The means for carrying out Reaction (25) have occupied several investigators. 121 124 125 The initial studies were by Sigsby et al, 121 4 ho used a stainless steel tube heated to temperatures greater than 900 K and observed quantitative conversion of NO₂ to NO. Thermal dissociation cannot account for this quantitative conversion and some contribution must be attributed to reduction of NO₂ at the hot metal surface. NH₃ can be oxidized to NO at high temperatures and is a potential interference since it is present in the atmosphere
and may be present in certain sources. Acidic scrubbers which quantitatively remove NH₃ and pass NO₂ have been used. 121 124 Breitenbach and Shelef 125 have described a number of carbon impregnated metals which may be operated at two different temperatures for the conversion of NO₂ or NO₂ + NH₃ and recommended a carbon—molybdenum composite heated to 750 K. Application of such converters has not yet been reported. When a converter is used NO_2 concentrations can be determined by difference from the NO_x and NO measurements. For the direct measurement of NO_2 a "photofragment" technique has been used. In this detector NO_2 is photolyzed and the resulting O atoms are measured via Reaction (4), by addition of excess NO_2 . For concentrations below 1 ppm (ambient air concentrations) the response is linear, with a lower limit of detection of 1 ppb. NH₃ is a constituent of the atmosphere which is produced by natural processes and by man's activities. Measurements of atmospheric NH₂ are of interest to determine its chemical fate and to assess the potential role of NH₃ in photochemical air pollution. A pyrolytic converter and a phosphoric acid pre-scrubber have been used by Hodgeson et al¹²⁴ to measure non-urban NH₃ concentrations from O₀OOl to O₀Ol ppm via $\{[NH_3] + [NO_X]\}$ - $[NO_X]$. The use of the O/NO reaction (4) can be advantageous in applications such as most source emissions where only a total NO_X measurement is required. Since the O/NO emission falls partly in the visible region, less expensive photomultipliers may be used. The original work here was performed by Snyder and Wooten^{1,27} of Monsanto under an EPA contract. Equivalent responses were obtained for NO and NO₂ and the detector sensitivity was found to be a few parts per billion. However, the electrical discharge O-atom sources used yielded a fluctuating background O/NO signal and O concentration. These problems have hindered application of this reaction. Work on a thermal O source, which could be more useful, has been reported. 128 Reaction (13) also appears practical for NO_X measurements. Although no ambient temperature applications of this reaction have been reported, Krost et al¹²⁹ have observed the characteristic H/NO chemiluminescence in the secondary combustion zone of an H₂-rich flame, into which nitrogen compounds (NO, NO₂, NH₃, organic amines) were introduced. By incorporating a near infrared interference filter (690 nm) between the flame chemiluminescent zone and a photomultiplier, a detector for gas-phase nitrogen compounds was developed. The chemiluminescence intensity has been found to be directly proportional to the total concentration of nitrogen compounds, and the lower limit of sensitivity was established as approximately O₂l ppm. #### C. Sulfur Compounds Atmospheric sulfur-containing pollutants include SO_{2} , $H_{2}S_{3}$ organic sulfides and mercaptans, sulfuric acid and sulfates. Of these SO_{2} has been the major pollutant of concern in atmospheric measurements. $H_{2}S$ and organic sulfur comprise the class of malodorous sulfur compounds in the localized pollution associated with the Kraft paper industry. Sulfuric acid and sulfates occur predominantly in the particulate form. The only chemiluminescence approach which has been applied to date is a flame method, which is applicable to the detection of gas-phase sulfur compounds as a class. When sulfur compounds are burned in an H₂ rich flame, a strong blue chemiluminescence is emitted. The emitting molecule is $S_2(B^{-3}\Sigma_u^-)$, formed via S-atom recombination either directly (Reaction 24) or indirectly (energy transfer), 130,131 Since two atoms are required, the intensity of the chemiluminescence is proportional to the square of the concentration of sulfur compound in the flame (for compounds containing only one sulfur atom). The original flame photometric detector (FPD) for sulfur compounds in air was revealed in a patent by Draeger. 132 A modified version by Brody and Chaney 133 has been incorporated in a commercial sulfur monitor which has found extensive application in atmospheric monitoring. The calibration and application of this monitor for detecting atmospheric concentrations or SO₂ has been discussed by Stevens et al. 134 The typical FPD uses as fuel a mixture of 200 cc/min of air and 200 cc/min H₂. An inert diluent gas (N_{2} , He) can be used to lower the flame temperature and the flame emission background (compare Section II.B). Since air already contains No. additional inert gas is not added to the atmospheric flame detector. The primary combustion zone is recessed in a barrel which functions as a light shield. The photomultiplier views the (cool) secondary combustion zone through an interference filter which transmits only the strong band at 394 nm. Although the emission is detected above the flame, the background signal obtained is predominantly due to flame background and is an order of magnitude greater than the photomultiplier dark current. 133 Thus the detector performance and sensitivity are determined by the magnitude of the drift and noise associated with the flame background emission. These are in turn strongly affected by flame temperature and gas flow rates. The flame noise for a typical flame photometric detector is equivalent to an SO₂ concentration of approximately 0.005 ppm. Efforts are underway to improve the performance of the FPD by correlation techniques. 135,136 The correlation technique used involves viewing and comparing one or more S2 emission peaks and adjacent background wavelengths. Considerable effort has been expended to develop a flame photometric based system which is specific for individual sulfur compounds. The most successful approach for atmospheric monitoring is the gas chromatographic (GC)-system developed by Stevens et al¹³⁷ for the quantitative elution of the sub-ppm concentrations of sulfur compounds found in the atmosphere (SO₂, $\rm H_2S_3$, simple mercaptans and organic sulfides). Commercial instruments based on the GC-FPD combination are now available. Both FPD and GC-FPD instruments have been extensively evaluated in field studies. 108 , 114 , 115 One of the most important observations of these studies was the close agreement obtained between the total sulfur measurement obtained with the FPD and the specific measurement of SO_2 by the GC-FPD. These results confirm those of Stevens et al, 137 who concluded that for most applications SO_2 accounts for 90% or more of the total gaseous S. Ambient temperature chemiluminescent reactions have been suggested for measurement of SO_2 and other sulfur compounds, but applications have not yet been reported. In addition to their work on NO_X detection. Snyder and Wooten 127 investigated the use of O-atom chemiluminescence for the detection of SO_2 . Reaction of SO_2 and C atoms produces SO_2 chemiluminescence in the ultraviolet via 138 $$0 + 0 + SO_2 + O_2 + SO_2 + h\nu$$ $(\lambda_{max} = 280 \text{ nm})$ (27) The sensitivity obtained for SO_2 detection using this chemiluminescence was 0.001 ppm, which is quite adequate for atmospheric detection. Since potential interfering molecules are known to produce chemiluminescence with 0 atoms in the ultraviolet, an interference filter is required to select a region of the SO_2 chemiluminescence spectrum. As is the case with NO_{∞} measurements, problems with 0-atom sources have hindered development of a chemiluminescence SO_2 detector. The use of thermal 0-atom sources may stimulate practical developments. Finally, Kummer, Pitts and Steer 139 have observed chemiluminescence from the gas-phase reactions of O_3 with a variety of sulfur compounds, including H_2S and organic sulfides, and suggested use of this chemiluminescence for measuring atmospheric sulfur. The emission observed from both H_2S and organic sulfides was due to electronically excited SO_2 . Therefore the use of O_3 as a second reactant gas should lead to a non-specific detector for gaseous sulfur compounds. Moreover, since the reaction rate of O_3 with different sulfur compounds varies considerably, the sentivity of such a detector would depend upon the compounds measured. # D. Carbon Monoxide and Phosphorus. Boron. Chlorine Compounds The reaction between O and CO produces a weak chemiluminescence in the 300-500 nm range. Comparison to the O_3/NO reaction suggests a predicted limit of sensitivity of 1 ppb. A preliminary study as not successful but further investigation appears warranted. In addition to measuring sulfur and nitrogen compounds, flame chemiluminescence methods have been used for the detection of phosphorus, 132, 133 boron 141 and halogen 142 compounds in air. HPO emission is observed in the 540 nm region when phosphorus compounds are burned; the sensitivity is in the sub-ppm range. Such detectors have been applied to the detection of phosphorus-containing pesticides. Boron compounds (used as catalysts in industrial applications and as high quality rocket fuels) are detected via BO2 emission near 550 nm; 141 this FPD method is sensitive to concentrations of less than O.1 ppm in air. Gilbert 142 has developed a sensitive flame emission method for chlorine compounds, in which indium metal is placed in the flame barrel. The presence of a small amount of indium vapor in the secondary combustion zone results in an intense chemiluminescent emission from InCl whenever chlorinated compounds are introduced into the flame. Application of this technique to atmosperic analysis has not been reported. and the second of the second s #### IV. UPPER ATMOSPHERE APPLICATIONS Chemiluminescent reactions in the upper atmosphere have been chiefly observed at heights above 90 km. The pressure at 90 km is about 10^{-3} Torr and falls to about 5×10^{-7} Torr at 200 km. Here most of the solar ultraviolet radiation is absorbed, dissociating molecular oxygen into atomic oxygen. Since there are few
three-body collisions, 0 does not appreciably recombine with 0_2 to form 0_3 , as is the case at lower altitudes. At about 105 km, the number density of 0 equals that of 0_2 ; at about 150 km, $[0] = [N_2]$. At 200 km, the atmosphere is composed of 70% 0, 29% N₂, 0.2% 0₂ and small quantities of He, Ar and H₂. ¹⁴³ Atomic 0 plays the major role in producing chemiluminescence, especially when electronic excitation is involved. #### A. Artificial Chemiluminescence Luminescent clouds are produced by releasing from a rocket-borne container a reactive chemical that interacts with an atmospheric constituent to produce chemiluminescence. Such clouds are confined to the 90-200 km region of the upper atmosphere. Below 90 km not only the absence of 0, but also the rapid condensation of the released chemicals prevents the observation of chemiluminescence, although it is possible to produce solar resonance excitation of atomic Na and Li as low as 80 km, and one can observe solar ray scattering from smoke trails at still lower altitudes. Above 200 km the released chemicals diffuse too rapidly to produce observable chemiluminescence. However, resonance fluorescence of Na, released from a Soviet Sputnik 144 has been observed at 156,000 km altitude, and of Ba ions, released in a joint US-German rocket experiment, at 32,000 km. 145 The artificial glow clouds or trails are photographed against a star background in the night or twilight sky. Time lapse photography allows measurement of drift velocity; thus, the horizontal and vertical components of the wind vectors can be established. 46 Up to about 110 km the clouds develop turbulent eddies and motion; above this altitude the clouds usually grow by molecular diffusion. Hence, eddy and molecular diffusion coefficients can be obtained by measuring the rate of growth of chemiluminescent clouds. 47, 48 Atmospheric density can be derived from the molecular diffusion rates (see e.g. Ref. 149). Atomic O concentrations can be deduced from the measurement of light intensity of relatively simple chemiluminescent processes, such as the NO/O glow (Reaction 4). 50 Other applications of artificial chemiluminescence include the simulation of luminescent phenomena associated with missile exhaust gases and natural airglow This paper deals with chemiluminescence; therefore the numerous rocket experiments in which solar excitation of atomic resonance lines or molecular fluorescence is observed will be mentioned only in passing. processes. In the following, we shall discuss the release techniques, reaction mechanisms and data interpretation of those chemiluminescent release agents found most useful in upper atmospheric studies. Doubtlessly, the ingenious atmospheric chemist will generate further ideas for suitable release chemicals and applications of chemiluminescent reactions for investigating this important region of the atmosphere. 1. Nitric Gxide. The air afterglow reaction was an obvious first choice for generating artificial chemiluminescence at night in the upper atmosphere. The first successful release of NO occurred in 1956. 151 This was a "point" release in which the NO was vented instantaneously by rupturing the container with a high explosive at 106 km altitude. An intense glow immediately appeared at the release point, growing in size and diminishing in intensity until 10 min after release when it was no longer observable. The second series of NO releases occurred in 1962. The gas was released from a high pressure container through two sideward pointing orifices by opening a squib valve at 90 km altitude till the gas supply was exhausted at about 150 km. Here an unexpected effect was noticed. A bright annular headglow surrounded the rocket as it traversed the sky, followed by a much dimmer afterglow. The afterglow was observed for only about 100 sec after rocket passage in the 90 to 120 km region where it followed the ambient wind and turbulent motions. Both the headglow and afterglow showed a spectrum similar to the laboratory NO/O reaction. 19 Analysis of the headglow brightness revealed that with reasonable values for atomic O densities the volumetric emission rate exceeded by 3-4 orders of magnitude the expected emission rate from the normal three-body reaction (4). Fontijn and Rosner have plausibly explained the anomalous intensity. During the adiabatic expansion, the temperature of the NO drops rapidly and the saturation curve is passed. Therefore, it is expected that part of the gas forms molecular clusters and possibly, condensed particles. Before entering the mixing zone, the NO passes through a shock wave in which the temperature of the gas is nearly restored to the reservoir value. It is probable, however, that some of the clusters survive the shock wave. The reaction then can be described as follows: $$(NO)_{n} + O \rightarrow NO_{2}^{*} + (NO)_{n-1}^{*}$$ (28) $$NO_2^+ + NO_2 + h\nu$$ (29) Here, the third body required in the normal three-body reaction (4) is carried along with the NO, so that basically every collision with atomic O could yield a stabilized NO_2 *. Therefore, NO clusters could account for the anomalously high photon emission rate provided there is sufficient concentration of clusters in the mixing zone. Subsequently, wind tunnel simulation experiments by Golomb and Good 154 demonstrated that such clusters (of which the dimer is the simplest form) indeed exist in expanding NO jets and that there is a direct relationship between cluster abundance in the free jet and photon emission rate in the headglow. Recently, it has also been shown that when the NO reservoir pressure, $p_{\rm CP}$ multiplied by the release orifice diameter, d, exceeds a value of 100 Torr cm, the headglow intensity becomes independent of the NO flow rate and the total pressure in the mixing zone. ¹⁵⁰ The brightness remains dependent, however, on the atomic O flux impinging onto the bow shock: $$B = q \dot{n}_0 \text{ photons cm}^{-2} \text{ sec}^{-1}$$ (30) where \dot{n}_0 is the O flux (free stream O density multiplied by the stream velocity), and q is the efficiency factor by which photons are emitted per impinging O atom. This efficiency was determined to be q=0.005 with an uncertainty factor of 2. Once the anomalous headglow intensity was explained, and the relevant efficiency factor determined in wind-tunnel calibrations, the NO release technique became a useful tool for upper atmosphere [O] determination. To In the rocket release, as in the wind-tunnel calibrations, the photometer is situated near the release orifice, viewing the headglow from its center. The measured brightness, B, is telemetered to the ground. From known vehicle velocity (which equals the stream velocity), ambient O densities are readily determined via Eq. (30). Current results are in good agreement with those derived from mass spectrometry. 155 2. Trimethyl Aluminum (TMA). Woodbridge observed that aluminized grenades produce a long-lasting luminescence when exploded in the 100-125 km altitude region. 156 Rosenberg and Golomb proved that an aluminum compound must be involved. 157 They detonated two charges of high explosive at 114 km altitude, one containing Al powder as an additive, the other none. Only the aluminized charge produced luminescence. Rosenberg et al developed a more convenient method to release an aluminized compound in the upper atmosphere--TMA. 158 TMA is a pyrophoric liquid and its handling and loading require special care. Typically, the liquid is dispensed from a pressurized container along the rocket trajectory, starting at about 90 km. A part of the liquid flash-vaporizes upon release, the remainder freezes. The frozen pacticles follow the ballistic trajectory and evaporate upon re-entry into the denser regions of the atmosphere at 100-90 km. The flash-vaporized molecules react with some constituent of the atmosphere, presumably atomic O, since the glow is most intense where atomic O is most abundant. TMA produces no headglow, only an afterglow which takes several seconds to develop. The afterglow spectrum appears to be a continuum in the visible. 159 This glowing trail follows the ambient wind motions. It grows radially by eddy or molecular diffusion, respectively. The following sequence of reactions appears most probable: $$TMA + O \rightarrow AlO + Radicals \tag{31}$$ SERVE TO CONTRACT CON AlO + O + M $$\rightarrow$$ AlO₂ + M + h ν (chemiluminescence) (2) $$A10_2 + 0 + A10 + 0_2$$ (recycling) (33) $$A10 + 0 + A1 + O_2 \text{ (destruction)} \tag{34}$$ This scheme is in accord with the following observations. In the TMA clouds, about 0.3 to 0.6 photons are emitted per vaporized TMA molecule. The high photon yield implies a cyclic process such as provided by Reaction (33) in which the intermediary molecule is regenerated. Fluorescence of the blue-green AlO bands $(B^2\Sigma^+-X^2\Sigma^+)$ has been observed in twilight releases of TMA; the presence of AlO is established. From the fluorescence spectral intensity distribution atmospheric temperatures are now routinely deduced (see e.g. Ref. 160). The bond energy of AlO is about 5.1 eV, 161 about equal to that of O_2 , explaining the fact that AlO is not readily reduced to Al by atomic O. Most metal monoxides have bond energies smaller than O_1 of and as a result do not persist in the O-rich region of the atmosphere, cf. e.g. FeO below. - 3. Acetvlene. C2H2 has been released to simulate the luminous and radio-frequency effects observed following the passage through the upper atmosphere of hydrocarbon/liquid oxygen burning missiles. 157 $\mathrm{C_2H_2}$ probably comes closest to the hydrocarbon fragments and radicals found in missile exhausts. These fragments are believed to be responsible for the CH and C2 band emission in missile plumes. 162 The highly energetic radicals may also enter into chemi-ionization reactions, causing the enhanced RF reflectivities of missile plumes at E-layer altitudes. The glow requires one to
several seconds after release to develop. The spectrum is similar to that observed in the laboratory 11 and shows 163 an apparent weak continuum upon which are superimposed the CH 431.5 nm band (strong), the CH 389.0 nm band (weak), and the C_2 516.5 nm band (weak). In addition there is a pronounced emission at about 577.0 nm $[O(^1S) \rightarrow O(^1D)?]$. Laboratory studies of the C_2H_2/O luminescence indicate that the CH bands become relatively more intense than the C_2 bands as pressure decreases. 164 The same effect has been observed in the upper atmosphere. - 4. Iron Pentacarbonyl. Fe(CO)₅ has been released both at night and in twilight, in the 100-150 km region. In twilight, when the sun still illuminates the ascending rocket, the fluorescence of the FeO orange bands is clearly observed in the headglow surrounding the rocket. The headglow is of short persistence and evolves into an afterglow of different spectral characteristics. In a subsequent, as yet unpublished, experiment it has been proven that the twilight afterglow consists of resonance scattering by FeI atoms. At night, Fe(CO)₅ produces a bright glow streaking through the sky, with no afterglow at all. Because of the reddish tint of the headglow, it is probable that some FeO molecules are produced in the emitting state, leading to chemiluminescence. An important observation is that in twilight the FeO fluorescence quickly disappears, indicating that this molecule is consumed in a fast reaction such as FeO + O - Fe + O₂. This reaction is exothermic by \approx O₄9 eV, and laboratory experiments indicate that it is very fast. ¹⁶⁶ 5. Other Chemical Releases. Several chemicals cause weak chemiluminescence in the upper atmosphere which is insufficent to obtain good wind, diffusion or composition measurements; however, the resulting glows might be interesting for the elucidation of the reaction mechanisms involved. These chemicals are CS2, NO2 and $Pb(CH_3)_4$. CS_2 shows intense SO_2 afterglow emission in the laboratory, 167 but in the upper atmosphere it is barely photographable. 157 This is attributable to the two steps necessary to produce the glow, $CS_2 + 0 \rightarrow CS + SO_2$, followed by Reaction (11). Apparently the steady-state concentration of SO following the release of CS2 is insufficient for high photon fluxes. Similarly, NO2 requires a two-step mechanism (Reactions 5 and 4) to produce light. However, not all multistep reactions lead to weak emission in the atmosphere as demonstrated by the TMA and C_2H_2 reactions. In the case of TMA, the strong chemiluminescence can be attributed to recycling of AlOs for C2H2 the actual emission steps are mainly 1 atom stripping and exchange reactions which tend to be much faster 168 than association reactions, such as (4). The weak chemiluminescence produced by the release of Pb(CH₃)₄ may be attributed to a reaction such as $PbO + O \stackrel{M}{\rightarrow} PbO_2 + h\nu$ # B. Natural Chemiluminescence (Airglow) The many chemically highly active species (atoms, ions, free radicals and excited species) present in the undisturbed upper atmosphere give rise to a weak luminescent phenomenon, the airglow. The airglow can be observed from the ground, away from the interference of moon and star light and aurorae, as a diffuse omnipresent glow. Rocket and satellite measurements have considerably increased our knowledge of these glows and their origins. Chemiluminescent reactions are by far the dominant process of the night glow; in day glows chemiluminescence is much less important than radiative processes produced by solar irradiation. For general reviews of airglows and the excitation mechanisms involved, see e.g. Refs. 170–174. Known emission features which are thought to be mainly or in part due to chemiluminescence are 170a the $O_2(A^3 \Sigma_U^{-} - X^3 \Sigma_g^{-})$ Herzberg bands and $(b^{1}\Sigma_g^{-1} - X^3 \Sigma_g^{-})$ atmospheric bands due to Reaction (17), the NO2 continuum due to the O/NO reaction (4), the O(1S-1D) 557.7 nm green line, the Na(2P-2S) 589.3 nm D line and the OH(v' \leq 9) vibration-rotation Meinel bands. Some of the airglow measurement methods used or proposed are very similar to those employed in conjunction with the more intense artificial glows. A major difference from the latter is that in the natural glow one no longer has one known reactant concentration (i.e. that of the release agent). However observations of natural glows can be far more extensive in time and space which constitutes an important advantage. Application to spatial isolation of the emitting layers and atmospheric dynamics is similar to the artificial glows and has been discussed (Sears, 170b see also Silverman 173). Temperature can be derived from several emission features. The Meinel OH bands are due to the reaction $$H \div O_3 - OH(v \le 9) + O_2$$ (35) Rotational equilibration requires only a few collisions and the rotational temperature of the Meinel bands is used as a measure of ambient temperature below about 90 km where collisions are sufficiently frequent. $^{170C_{\circ}1713}$ The O(1 S) state has a radiative lifetime of 0.74 sec, orders of magnitude higher than the collision time at around 100 km, where a maximum in the intensity of the O(1 S- 1 D) emission occurs, and the emitter at that altitude may therefore be considered to be thermalized; the Doppler line profile of this line is used as a measure of temperature. 1713 The O(1 S) formation near 100 km is due to a reaction involving three O(3 P) atoms (possibly via intermediate formation of an excited O₂ molecule). However, a second O-green line intensity maximum is observed near 180 km to which the reaction $$O_2^+ + e^- + O(^1S) + O(^3P)$$ (36) contributes in a major way. Reaction (%) is 2.8 eV exothermic; since the only products are atomic species this energy must go into translational energy and as a result the emission profile is non-thermal at this higher altitude. The Dandekar and Turtle have measured the intensity of the oxygen green line with a rocket-borne photometer to determine the distribution of O(3P) as a function of altitude near 100 km. The results are in reasonable agreement with those measured by other means (mass spectrometry and NO releases). In closing, it must be remarked that in view of the highly complex environment in which the natural airglows occur, measurements of these glows should be considered as very useful adjuncts to other upper atmospheric measurements rather than as supplying uniquely correct data. Agreement of results from various methods and their use in model atmospheres is leading to an ever more accurate knowledge of the upper atmosphere. It is likely that chemiluminescence is also going to play an important role in studying the upper atmosphere of other planets, once night glow observations of those environments are made. #### V. EPILOGUE It may be concluded from this article that measurement techniques based on gas-phase chemiluminescence have found widespread use in the laboratory for reaction kinetics, quantitative analysis and gas dynamic studies. While there are several gaseous environments of major technological interest, applications of basic knowledge and laboratory techniques have thus far been mainly restricted to upper atmospheric studies and air pollutant monitoring. Recent rapid developments and acceptance of chemiluminescence techniques in this latter area suggest that similar developments may be possible elsewhere. Direct observations of practical combustion sources and monitoring and control of industrial process streams are examples of areas for which chemiluminescence techniques would appear to hold promise. A beginning along these lines is the study of NO formation in internal combustion engines via observation of the O/NO and O/CO continua by Lavoie, Heywood and Keck. 176, 177 The advantages of chemiluminescence for monitoring process streams were pointed out a number of years ago 178, 179 but no actual work along these lines has come to our attention, suggesting that this is still largely virgin territory. Acknowledgment. We have benefited from the comments and information supplied by a number of people. Particularly, Dr: K.L. Wray, E.M. Bulewicz, M. Steinberg, J.C. Keck, R.A. Young, W.J. Miller and H.S. Pergament have been most helpful. Thanks are also due to Ms. Helen Rothschild and Ms. Evangeline Stokes for the careful editing and typing of the manuscript, respectively. # REFERENCES † - 1. G. Agricola, <u>De Re Metallica</u> (First Latin Edition 1556; translated into English by H.C. and L.H. Hoover), <u>Dover Publications</u>, New York, 1950, Book VII. - 2. F. Kaufman, Progr. React. Kin. 1, 1 (1961). - 3. B.A. Thrush, Science 156, 470 (1967). - 4. A. Fontijn, Progr. React. Kin. 6, 75 (1972). - 5. F. Kaufman, Proc. Roy. Soc. <u>A247</u>, 123 (1958). - 6. J.T. Herron and H.I. Schiff, Can. J. Chem. 36, 1159 (1958). - 7. A.A. Westenberg and N. deHaas, J. Chem. Phys. 40, 3087 (1964). - 8. F.A. Morse and F. Kaufman, J. Chem. Phys. 42, 1785 (1965). - 9. F. Kaufman and J.R. Kelso, J. Chem. Phys. 46, 4541 (1967). - 10. M.A.A. Clyne, C.J. Halstead and B.A. Thrush, Proc. Roy. Soc. A295, 355 (1966). - 11. C.J. Halstead and B.A. Thrush, Proc. Roy. Soc. A295, 363 (1966). - 12. L. Elias, J. Chem. Phys. 38, 989 (1963). - 13. L. Elias and H.I. Schiff, Can. J. Chem. 38, 1657 (1960). - 14. J.T. Herron and R.E. Huie, Progr. React. Kin. (in press). - 15. P.B. Davies and B.A. Thrush, Trans. Faraday Soc. 64, 1836 (1968). - 16. P.A. Leighton, <u>Photochemistry of Air Pollution</u>, Academic Press, New York, 1961, Chap. 8. - 17. F. Stuhl and H. Niki, Chem. Phys. Lett. 7, 197 (1970). - 18. R.A. Young, G. Black and T.G. Slanger, J. Chem. Phys. 49. 4758 (1968). - 19. A. Fontijn, C.B. Meyer and H.I. Schiff, J. Chem. Phys. 40, 64 (1964); A. Fontijn and H.I. Schiff in Chemical Reactions in the Lower and Upper Atmosphere. Interscience, New York, 1961. p. 239. - 20. A.
Fontijn and J. Lee, J. Opt. Soc. Am. 62, 1095 (1972). - 21. M. Vanpee, K.D. Hill and R. Kineyko, AIAA J. 9, 135 (1971). - 22. D.E. Paulsen, W.F. Sheridan and R.E. Huffman, J. Chem. Phys. 53, 647 (1970). - 23. A.T. Stair and J.P. Kennealy, J. Chim. Phys. (Paris) 64, 124 (1967). - 24. A. Sharma, J.P. Padur and P. Warneck, J. Chem. Phys. 43, 2155 (1965); J. Phys. Chem. 71, 1602 (1967). - 25. F. Kaufman, "The Air Afterglow Revisited," this symposium. - 26. M. Mandelman, T. Carrington, R.A. Young, York U., Toronto, to be submitted. - 27. M.A.A. Clyne and B.A. Thrush, Proc. Roy. Soc. <u>A269</u>, 404 (1962). - 28. F. Kaufman and J.R. Kelso, in Preprints of Papers, Symposium on Chemiluminescence, Durham, 31 Mar.-2 Apr., 1965, p. 65. - 29. R.P. Hartunian, W.P. Thompson and E.W. Hewitt, J. Chem. Phys. 44, 1765 (1966). - 30. M.A.A. Clyne and B.A. Thrush, Disc. Faraday Soc. <u>33</u>, 139 (1962). - 31. L. Elias, J. Chem. Phys. 44, 3810 (1966). - 32. J.E. Morgan, L. Elias and H.I. Schiff, J. Chem. Phys. 33, 930 (1960). - 33. P. Harteck, R.R. Reeves and G. Mannella, J. Chem. Phys. 29, 608 (1958). - 34. I.M. Campbell and B.A. Thrush, Proc. Roy. Soc. <u>A296</u>, 222 (1967). - 35. R.A. Young and R.L. Sharpless, Disc. Faraday Soc. 33, 228 (1962). - 36. R.A. Young and R.L. Sharpless, J. Chem. Phys. <u>39</u>, 1071 (1963). - 37. R.A. Young and G. Black, J. Chem. Phys. 44, 3741 (1966). - 38. R.J. McNeal and S.C. Durana, J. Chem. Phys. 51, 2955 (1969). - 39. R.A. Young and R.L. Sharpless, J. Geophys. Res. 67, 3871 (1962). - 40. R.L. Brown, J. Chem. Phys. 52, 4604 (1970). - 41. W. Brennen and R.L. Brown, J. Chem. Phys. 52, 4910 (1970). - 42. W. Brennen and E.C. Shane, Chem. Phys. Lett. 2, 143 (1968). - 43. E.C. Shane and W.Brennen, Chem. Phys. Lett. 4, 31 (1969). - 44. A.N. Wright and C.A. Winkler, <u>Active Nitrogen</u>, Academic Press, New York, 1968. - 45. R.W.F. Gross, J. Chem. Phys. 48, 1302 (1968). - 46. R.W.F. Gross, and N. Cohen, J. Chem. Phys. 48, 2582 (1968). - 47. T. Carrington and D. Garvin, <u>Comprehensive Chemical Kinetics</u>, <u>Vol., 3. Formation and Decay of Excited Species</u>, C.H. Bamford and C.F.H. Tipper, Eds., Elsevier, Amsterdam, 1969, Chap. 3. - 48. B.A. Thrush, Ann. Rev. Phys. Chem. 19, 371 (1968). - 49. L.F. Phillips, Can. J. Chem. <u>46</u>, 1450 (1968). - 50. A. Fontijn and R. Ellison, J. Phys. Chem. 72, 3701 (1968). - 51. I.M. Campbell, S.B. Neal, M.F. Golde and B.A. Thrush, Chem. Phys. Lett. 8, 612 (1971). - 52. J.A. Meyer, D.W. Setser and W.G. Clarke, J. Phys. Chem. <u>76</u>, 1 (1972). - 53. G.W. Taylor and D.W. Setser, Chem. Phys. Lett. 8, 51 (1971); J. Am. Chem. Soc. 93, 4930 (1971). - 54. K.H. Becker and K.D. Bayes, J. Chem. Phys. 48, 653 (1968). - 55. E.L. Milne, M. Steinberg and H.P. Broida, J. Chem. Phys. 42, 2615 (1965). - 56. A.G. Gaydon, <u>Dissociation Energies and Spectra of Diatomic Molecules</u>, 3rd Edition, Chapman and Hall, London, 1968. a. Chaps. 3-6; b. Chap. 7. - 57. C.D. Jonah, R.N. Zare and Ch. Ottinger, J. Chem. Phys. <u>55</u>, 263 (1972). - 58. R.A. Young, J. Chem. Phys. 33, 1044 (1960); 34, 1295 (1961). - 59. R.E. Lund and H.J. Oskam, J. Chem. Phys. <u>48</u>, 109 (1968). - 60. K. Loomis, A. Bergendahl, R.R. Reeves, Jr. and P. Harteck, J. Am. Chem. Soc. 91, 7709 (1969). - 61. J.E. Morgan and H.I. Schiff, J. Chem. Phys. 38, 2631 (1963). - 62. J.E. Morgan and H.I. Schiff, Can. J. Chem. 42, 2300 (1964). - 63. B. Khouw, J.E. Morgan and H.I. Schiff, J. Chem. Phys. 50, 66 (1969). - 64. K.M. Sancier, W.J. Fredericks, J.L. Hatchett and H. Wise, J. Chem. Phys. 37, 860 (1962). - 65. K.M. Sancier, D.J. Schott and H. Wise, J. Chem. Phys. 42, 1233 (1965). 66. K.M. Sancier, J. Chem. Phys. 42, 1240 (1965). - 67. A.G. Gaydon and H.G. Wolfhard, Flames, Their Structure, Radiation and Temperature, 3rd Edition, Chapman and Hall, London, 1970. - 68. J.D. Winefordner, Ed., Spectrochemical Methods of Analysis, Wiley-Interscience, New York, 1971. a. C. Th.J. Alkemade and P.J.Th. Zeegers, Chap. 1; b. J. Ramirez-Munoz, Chap. 2. 69. T.M. Sugden, Ann. Rev. Phys. Chem. 13, 369 (1962). - 70. R. Mavrodineanu, Ed., Analytical Flame Spectroscopy. Selected Topics, Macmillan, London, 1970. a. C.Th.J. Alkemade, Chap. 1; b. P.T. Gilbert, Chap. 5. - 71. J.A. Dean and T.C. Rains, Eds., <u>Flame Emission and Atomic Absorption Spectrometry</u>, Vol. 1. Theorys Vol. 2. Components and <u>Techniques</u>, Marcel Dekker, New York, 1969, 1971. - 72. R. Mavrodineanu and H. Boiteux, Flame Spectroscopy, Wiley, New York, 1965. a. p. 553; b. p. 549. - 73. A.G. Gaydon, The Spectroscopy of Flames, Wiley, New York, 1957, Chap. 7. - 74. T.M. Sugden, E.M. Bulewicz and A. Demerdache in <u>Chemical</u> <u>Reactions in the Lower and Upper Atmosphere</u>, Interscience, New York, 1961, p. 89. - 75. E.M. Bulewicz in <u>Twelfth Symposium (International) on Combustion</u>, The Combustion Institute, Pittsburgh, 1969, p. 957. - 76. P.J. Padley and T.M. Sugden, Proc. Roy. Soc. A248, 248 (1958). - 77. E.M. Bulewicz and T.M. Sugden, Trans. Faraday Soc. 52, 1475 (1956). - 78. J.L. Rosenfeld, PhD. Thesis, Cambridge, 1961. - 79. R. Carabetta and W. Kaskan in <u>Eleventh Symposium (International)</u> on <u>Combustion</u>, The Combustion Institute, Pittsburgh, 1967, p. 321. - 80. P.T. Gilbert in <u>Proc. Xth Collog. Spectrosc. Internat.</u>, E.R. Lippincott and M. Margoshes, Eds., Spartan Books, Washington, 1963, p. 171. - 81. No recent comprehensive review of this subject exists. For pertinent discussions see e.g., the Biannual International Combustion Symposium volumes, The Combustion Institute, Pittsburgh and Refs. 72b and 73. - 82. R.W. Reid and T.M. Sugden, Disc. Faraday Soc. 33. 213 (1962). 83. R.W.B. Pearse and A.G. Gaydon, The Identification of Molecular Spectra, 3rd Edition, Chapman and Hall, London, 1963. - 84. R.M. Fristrom and A.A. Westenberg, Flame Structure, McGraw-Hill, 1965, p. 215. - 85. A. Fontijn, D.E. Rosner and S.C. Kurzius, Can. J. Chem. 42, 2440 (1964). - 86. B.F. Myers and E.R. Bartle, J. Chem. Phys. 48, 3935 (1968). - 87. R.D. Sharma and K.L. Wray, J. Chem. Phys. 54, 4578 (1971). - 88. K.L. Wray and E.V. Feldman in <u>Fourteenth Symposium (International) on Combustion</u>, The Combustion Institute, Pittsburgh, in press. - 89. H.B. Palmer, J. Chem. Phys. <u>47</u>, 2116 (1967). - 90. K.L. Wray and S.S. Fried, J. Q. S. R. T. 11, 1171 (1971). - 91. J.F. Bott and T.A. Jacobs, J. Chem. Phys. 52, 3545 (1970). - 92. R.A. Carabetta and H.B. Palmer, J. Chem. Phys. 46, 1325 (1967). - 93. R.A. Carabetta and H.B. Palmer, J. Chem. Phys. 46, 1333 (1967). - 94. B.F. Myers and E.R. Bartle, J. Chem. Phys. 47, 1783 (1967). - 95. D. Gutman, R.W. Lutz, N.F. Jacobs, E.A. Hardwidge and - G.L. Schott, J. Chem. Phys. 48, 5689 (1968). - 96. N. Cohen and R.W.F. Gross, J. Chem. Phys. 50, 3119 (1969). - 97. R.W. Ladenburg, Ed., Physical Measurements in Gas Dynamics and Combustion, Princeton University Press, Princeton, 1954. - and Compustion, Princeton University Press, Princeton, 1954. a. Articles Al-A3; b. E. Winkler, Article A4. - 98. M. Steinberg, K.S. Wen, T. Chen and C.C. Yang, AIAA Preprint No. 70-729, 1970. - 99. G.W. Sutton and M. Camac, AIAA J. 6, 2402 (1968). - 100. R.L. Schapker and M. Camac, AIAA J. 7, 2254 (1969). - 101. R.A. Hartunian and D.J. Spencer, AIAA J. 5, 1397 (1967). - 102. R.A. Hartunian and D.J. Spencer, AIAA J. 4, 1305 (1966). - 103. F.P. DelGreco, D. Golomb, J.A. van der Bliek and - R.A. Cassanova, J. Chem. Phys. 44, 4349 (1966); D. Golomb and - R.E. Good, J. Chem. Phys. 49, 4176 (1968); the headglow extinction method is as yet unpublished. - 104. C.R. Philbrick, AFCRL, Bedford, Mass., unpublished results. - 105. V.H. Regener, J. Geophys. Res. 65, 3975 (1960); 69, 3795 (1964). - 106. J.R. Smith, H.G. Richter and L.A. Ripperton, Final Report, EPA Contract No. PH 27-68-26, 1967. - 107. J.A. Hodgeson, K.J. Krost, A.E.O'Keeffe, and R.K. Stevens, Anal. Chem. 42, 1795 (1970). - 108. L.F. Ballard, J.B. Tommerdahl, C.E. Decker, T.M. Royal, and D.R. Nifong, Research Triangle Inst., NTIS PB 204 444, April 1971. - 109. J.A. Hodgeson, B.E. Martin and R.E. Baumgardner, Paper No. 77, Eastern Analytical Symposium, New York, 1970. - 110. G.W. Nederbragt, A. Van der Horst and J. Van Duijn, Nature 206, 87 (1965). - 111. B.J. Finlayson, J.N. Pitts, and H. Akimoto, Chem. Phys. Lett. 12, 495 (1972). - 112. G.J. Warren and G. Babcock, Rev. Sci. Instr. 41, 280 (1970). - 113. Environmental Protection Agency, Federal Register 36 (228), 22384 (Nov. 25, 1971). - 114. L.F. Ballard, J.B. Tommerdahl, C.E. Decker, T.M. Royal, and L.K. Matus, Interim Report, Phase I and II and Final Report, EPA Contract No. CPA 70-101, 1971. - 115. R.K. Stevens, J.A. Hodgeson, L.F. Ballard, and C.E. Decker in <u>Determination of Air Quality</u>, G. Mamantov and W.D. Shults, Eds. Plenum, New York, 1970. - 116. R.K. Stevens, T.A. Clark, C.E. Decker, and L.F. Ballard, Paper No. 72-13, 65th Annual Meeting, Air Pollution Control Association, Miami, June 1972. - 117. A. Fontijn, A.J. Sabadell and R.J. Ronco, Anal. Chem. 42, 575 (1970). - 118. R.J. Ronco and A. Fontijn, AeroChem Research Labs., Inc., NTIS PB 209 837, May 1971. - 119. D.H. Stedman, E.E. Daby, F. Stuhl, and H. Niki, J. Air Poll. Control Assoc. 22, 260 (1972). - 120. F. Stuhl and H. Niki, Ford Motor Co., Dearborn, Report No. SR-70-42, 1970. - 121. J.E Sigsby, F.M. Black, T.A. Bellar, and D.L. Klosterman, Publication Preprint, EPA, 1972. - 122. H. Niki, A. Warnick and R.R. Lord, Paper No. 710072, Society of Automotive Engineers, Detroit, January 1971. - 123. Environmental Protection Agency, Federal Register 136 (128), 12652 (July 2, 1971). - 124. J.A. Hodgeson, K.A. Rehme, B.E. Martin, and R.K. Stevens, Paper No. 72-12, 65th Annual Meeting Air Poll. Contr. Assoc., Miami, June 1972. - 125. L.P. Breitenbach and M. Shelef, Ford Motor Co., Dearborn, Technical Report No. SR 71-130, 1971. - 126. W.A. McClenny, J.A. Kodgeson and J.P. Bell, Paper No. Watr-60, 164th National Meeting, Am. Chem. Soc., New York, August
1972. - 127. A.D. Snyder and G.W. Wooten, Monsanto Research Corp., NTIS PB 188 103, August 1969. - 128. F.M. Black and J.E. Sigsby, Publication Preprint, EPA, 1972. - 129. K.J. Krost, J.A. Hodgeson and R.K. Stevens, Publication Preprint, EPA, 1972. - 130, A. Syty and J.A. Dean, Appl. Opt. 7, 1331 (1968). - 131. A. Tewarson and H.B. Palmer in <u>Thirteenth Symposium (International) on Combustion</u>, The Combustion Institute, Pittsburgh, 1971,p.99. - 132. B. Draeger, Heinrich Draegerwerk, West Germany Patent 1,133,918, July 26, 1962. - 133. S.S. Brody and J.E. Chaney, J. Gas Chromatogr. 4, 42 (1966). - 134. R.K. Stevens, A.E. O'Keeffe and G.C. Ortman, Environ. Sci. Tech. 2, 652 (1969). - 135. A. Horning, EPA Contract No. EHSD 71-50, 1972. - 136. J.W. Shiller, Bendix Tech. J. 4, 56 (1971). - 137. R.K. Stevens, J.D. Mulik, A.E. O'Keeffe, and K.J. Krost, Anal. Chem. 43, 827 (1971). - 138. M.F.R. Mulcahy and O.J. Williams, Chem. Phys. Lett. 7, 455 (1970). - 139. W.A. Kummer, J.N. Pitts, Jr., and R.P. Steer, Environ. Sci. Tech. 5, 1045 (1971). - 140. M.A.A. Clyne and B.A. Thrush in Ninth Symposium (International) on Combustion, Academic Press, New York, 1963, p. 177. - 141. R.S. Braman and E.S. Gordon, IEEE Trans. IM-14, 11(1965). - 142. P.T. Gilbert, Anal. Chem. 38, 1920 (1966). ``` International Reference Atmosphere (CIRA 72), North Holland Publ. Co., Amsterdam, 1972 (in press). 144. I.S. Shklovskii in Artificial Earth Satellites, Vol. 4, Plenum Press, New York, 1961, p. 445. 145. Sky and Telescope, December 1971, p. 382 (unsigned article). 146. N.W. Rosenberg and H.D. Edwards, J. Geophys. Res. 69, 2819 (1964). 147. S.P. Zimmerman and K.S.W. Champion, J. Geophys. Res. <u>68</u>, 3049 (1963). 148. D. Golomb and M.A. MacLeod, J. Geophys. Res. 71, 2299 (1966). 149. D. Golomb, D.F. Kitrosser and R.H. Johnson, in Space Res. XII. Akademie Verlag, Berlin, 1972, p. 733. 150. D. Golomb and R.E. Good, ibid., p. 675. 151. J. Pressman, L.M. Aschenbrand, F.F. Marmo, A. Jursa, and M. Zelikoff, J. Chem. Phys. 25, 187 (1956). 152. D. Golomb, N.W. Rosenberg, C. Aharonian, J.A.F. Hill, and H.L. Alden, J. Geophys. Res. 70, 1155 (1965). A. Fontijn and D.E. Rosner, J. Chem. Phys. 46, 3275 (1967). 154. D. Golomb and R.E. Good, J. Chem. Phys. <u>49</u>, 4176 (1968). 155. C.R. Philbrick, G.A. Faucher and E. Trzcinski, in Space Research XIII, Akademie Verlag, Berlin, to be published, 1973. 156. D.D. Woodbridge in Chemical Reactions in the Lower and Upoer Atmosphere, Interscience Publ. Co., New York, 1961, p. 373. 157. N.W. Rosenberg and D. Golomb in "Project Firefly, 1962-63," N.W. Rosenberg, Ed., AFCRL Environmental Research Papers, No. 15, AFCRL-64-364, 1964, Chap. 1. 158. N.W. Rosenberg, D. Golomb and E.F. Allen, J. Geophys. Res. <u>68</u>, 5895 (1963). 159. N.W. Rosenberg, D. Golomb and E.F. Allen, J. Geophys. Res. <u>69</u>, 1451 (1964). 160. D. Golomb, F.P. DelGreco, O. Harang, R.H. Johnson, and M.A. MacLeod in Space Research VIII, North Holland Publ. Co., Amsterdam, 1968, p. 705. 161. O.M. Uy and J. Drowart, Trans Faraday Soc. <u>67</u>, 1293 (1971). 162. N.W. Rosenberg, W.H. Hamilton and D.J. Lovell, Appl.Optics. 1. 115 (1962). 163. C.D. Cooper in Ref. 157, p. 161. 164. N. Jonathan and G. Doherty in Ref. 157. p. 393. 165. G.T. Best, C.A. Forsberg, D. Golomb, N.W. Rosenberg, and W.K. Vickery, J. Geophys. Res. 77, 1677 (1972). 166. M.J. Linevsky as quoted by A. Fontijn and S.C. Kurzius, Chem. Phys. Lett. 13, 507 (1972). 167. P. Harteck and R. Reeves, Bull. Soc. Chim. Belg. 71, 682 (1962). 168. E.M. Bulewicz, P.J. Padley and R.E. Smith, Proc. Roy. Soc. 169. R.A. Hord and H.B. Tolefson, Virginia J. Sci. 16, 105 (1965). 170. B.M. McCormac, Ed., The Radiating Atmosphere, D. Reidel ``` Publishing Co., Dordrecht-Holland, 1971. as D.M. Hunten, p. 1, bs R.D. Sears, p. 116, cs G. Visconti, F. Congeduti and G. Fiocco, p.82. 171. B.M. McCormac and A. Omholt, Eds., Atmospheric Emissions, Van Nostrand, New York, 1969. as G.C. Shepherd, p. 411. 172. J.F. Noxon, Space Sci. Rev. 8, 92 (1968). 173. S.M. Silverman, Space Sci. Rev. 11, 341 (1970). 174. J.W. Chamberlain, Physics of the Aurora and Airglow, Academic Press, New York, 1961. 175. B.S. Dandekar and J.P. Turtle, Planet Space Sci. 19, 949 (1971). 176. G.A. Lavoie, Combust. Flame 15, 907 (1970). $a_{m} = a_{m} + a_{m$ THE STATE OF THE PERSON 177. G.A. Lavoie, J.B. Heywood and J.C. Keck, Comb. Sci. and Techn. 1, 313 (1970). 178. V.Ya. Shlyapintokh, O.N. Karpukhin, L.M. Postnikov, V.F. Tsepalov, A.A. Vichutinskii, and I.V. Zakharov, <u>Chemiluminescence Techniques in Chemical Reactions</u>, Consultants Bureau, New York, 1968, p. 181. 179. V.Ya. Shlyapintokh, R.F. Vassil'ev and O.N. Karpukhin, U.S.S.R. Patent 127779, Byul. Izobret, No. 8 (1960) as quoted in Ref. 178 and by R.F. Vassil'ev, Progr. React. Kin. 4, 305 (1967). References for which an NTIS number has been cited may be obtained from Dept. A, National Technical Information Service, Springfield, Va. 22151. ences the result in the control of the property of the control Central Intelligence Agency Washington, D. C. 20505 ATTN: CRS/ADD/Publications prosperior of the control of Institute for Defense Analyses 400 Army-Navy Drive Arlington, Virginia 22202 ATTN: Dr. Hans G. Wolfhard, Sen, Staff Defense Documentation Center Cameron Station Alexandria, Virginia 22314 EPA Technical Center Research Triangle Park North-Carolina 27711 ATTN: Dr. W. Herget, P-222 Arnold Air Force Station Tennessee ATTN: AEDC (DYF) Arnold Air Force Station Tennessee ATTM: R. E. Smith Jr., Chief T-Cells Division Engine Test Facility Air Force Eastern Test Range MU-135 Patrick Air Force Base Florida 32925 ATTN: AFETR Technical Library Air Force Office of Scientific Research 1400 Wilson Boulevard Arlington, Virginia 22209 ATTN: Dr. Joseph F. Masi Air Force Aero Propulsion Laboratory Wright-Patterson AFB, Ohio 45433 ATIN: AFAPL/TBC Dr. Kervyn Mach Air Force Aero Propulsion Laboratory Wright-Patterson AFB, Ohio 45433 ATTN: Francis R. Ostdiek Air Force Rocket Propulsion Laboratory Department of Defense Edwards AFB, California 93523 ATTN: LKCG (Mr. Selph) U. S. Army Air Mobility Research and Development Laboratory Eustis Directorate Fort Eustis, Virginia 23604 ATIN: Propulsion Division (SAVDL-EU-PP) U. S. Army Artillery Combat Developments Agency Fort Sill, Oklahoma ATIN: Commanding Officer U. S. Army Missile Command Redstone Arsenal, Alabama 35809 AITN: AMSMI-RR U. S. A. w Missile Command Redston · Scientific Information Center Redstone Arsenal, Alabama 35809 ATTN: Chief, Document Section NASA Deputy Director, Aeronautical Propulsion Division, Code RL Office of Advanced Research & Technology Washington, D. C. 20546 AITN. Mr. Nelson F. Rekos NASA Ames Research Center Deputy Chief Aeronautics Division Mail Stop 27-4 Moffett Field, California 94035 ATTN: Mr. Edward Y. Perkins NASA Langley Research Center Hampton, Virginia 23365 ATTN: Dr. Robert S. Levine Mail Stop 213 NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 ATTN: D. Morris Mail Stop 60-3 NASA Lewis Research Center Hypersonic Propulsion Section Hail Stop 6-1 21000 Brookpark Road Cleveland, Ohio 44135 ATTN: Dr. Louis A. Povinelli NASA Marshall Space Flight Center S&E-ASTN-P Huntsville, Alabama 35812 ATTN: Mr. Keith Chandler National Science Foundation Engineering Energetics Engineering Division Washington, D. C. 20550 ATTN: Dr.George Lee National Science Foundation Engineering Energetics Engineering Division Washington, D. C. 20550 ATTN: Dr. M. Ojalvo National Science Foundation Engineering Energetics Engineering Division Washington, D. C. 20550 ATIN: Dr. Royal Rostenbach National Technical Information Service Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 ATTN: Chief, Input Section U. S. Naval Air Development Center Commanding Officer (AD-5) Johnsville, Pennsylvania ATTN: NADC Library Naval Air Propulsion Test Center (R&T) Trenton, New Jersey 08628 ATTN: Mr. Al Martino Naval Air Systems Command Department of the Navy Washington, D. C. 20360 ATTN: Research Administrator AIR 310 Naval Air Systems Command Department of the Navy Washington, D. C. 20360 ATTN: Propulsion Technology Admin AIR 330 Naval Air Systems Command Department of the Navy Washington, D. C. 20360 ATTN: Technical Library Division AIR 604 U. S. Maval Ordnance Laboratory Commander White Oak Silver Springs, Maryland 20910 ATTN: Library STEAL ACTION TO STEAL CONTRACTOR CONTRACTOR 3 Naval Ordnance Systems Command Department of the Navy Washington, D. C. 20360 ATTN: ORD 0331 Naval Postgraduate School Department of Aeronautics, Code 57 Monterey, California 93940 ATTN: Dr. Allen E. Fuhs Nava? Postgraduate School Superintendent Monterey, California 93940 ATTN: Library (Code 2124) U. S. Naval Postgraduate School Monterey, California 93940 ATTN: Library, Code 0212 Office of Naval Research Branch Office 1030 East Green Street Pasadena, California 91106 ATIN: Dr. Rudolph J. Marcus Office of Naval Research San Francisco Area Office 50 Fell Street San Francisco, California 94102 Office of Naval Research Branch Office 536 S. Clark Street Chicago, Illinois 60605 ATTN: Director Office of Naval Research New York Area Office 207 W. 24th Street New York, New York 10011 Office of Naval Research Branch Office 495 Summer Street Boston, Massachusetts 02210 ATTN: Director Office of Naval Research Power Branch, Code 4/3 Department of the Navy Arlington, Virginia 22217 Office of Naval Research Fluid Dynamics Branch Code 438 Department of the Navy Mashington, D. C. ATTN: Mr. Morton Cooper Naval Research Lab Code 7710 Washington, D. C. 20390 ATTN: W. W. Balwanz U. S. Naval Research Laboratory Director Washington, D. C. 20390 ATTN: lechnical Information Div. Naval Research Laboratory Director Washington, D. C. 20390 ATTN: Library Code 2629 (UNRL) Naval Ship Research and Development Ctr. Annapolis Division Annapolis, Maryland 21402 ATTN: Library, Code A214 Naval Ship System: Command Department of the Navy Washington, D. C. 20360 ATTN:
Technical Library 34 Naval Weapons Center Commander China Lake, California 93555 ATTN: Airbreathing Propulsion Branch Code 4583 Naval Weapons Center Chemistry Division China Lake, California 93555 ATTN: Dr. William S. McEwan Code 605 U. S. Naval Weapons Center Commander China Lake, California 93555 ATTN: Technical Library U. S. Naval Weapons Center Code 608 Thermochemistry Group China Lake, California 93555 ATTN: Mr. Edward W. Price, Head U. S. Naval Weapons Laboratory Dahlgren, Virginia 22448 ATTN: Technical Library Navy Underwater Systems Center Fort Trumbull New London, Connecticut 06320 ATTN: Technical Library Picatinny Arsenal Commanding Officer Dover, New Jersey 07901 ATTN: Technical Information Library State Documents Section Exchange and Gift Division Washington, D. C. 20540 ATTN: Library of Congress #### LABORATORIES AND COMPANIES AeroChem Research Laboratories, Inc. P. O. Box 12 Princeton, New Jersey 08540 ATTN: Dr. Arthur Fontijn AeroChem Research Laboratories, Inc. P. O. Box 12 Princeton, New Jersey 08540 ATIN: Library Aerojet Liquid Rocket Company P. O. Box 13222 Sacramento, California 95813 ATTN: Technical Information Center Aeronautical Res. Assoc. of Princeton 50 Washington Road Princeton, New Jersey 08540 ATIN: Dr. Guido Sandri Aerospace Corporation Propulsion Department IIII East Mill Street San Bernardino, California ATIN: Mr. Alexander Muraszew Aeroprojects, Inc. West Chester Pennsylvania 19380 Atlantic Research Corporation Shirley Highway and Edsall Road Alexandria, Virginia 22314 ATTN: Librarian Atlantic Research Corporation Shirley Highway at Edsall Road Alexandria, Virginia 22314 ATTN: Dr. Andrej Macek Atlantic Research Corporation Shirley Highway at Edsall Road Alexandria, Virginir 22314 ATTN: Dr. Kermit E. Woodcock Manager, Propulsion AVCO Everett Research Laboratory 2385 Revere Beach Parkway Everett, Massachusetts 02149 ATTN: Mr. Donald Leonard AVCO Everett Research Laboratory Everett, Massachusetts 02149 ATIN. Librarian AVCO Lycoming Corporation 550 South Main Street Stratford, Connecticut 06497 ATIN Mr. John W. Schrader Asst. Director R & D Ballistics Research Laboratory Commanding Officer Aberdeen Proving Ground, Maryland ATTN: Library Battelle Columbus Laboratories 505 King Avenue Columbus, Ohio 43201 ATTN: Mr. Abbott A. Putnam Atmospheric Chemistry and Combustion Systems Div. Beech Aircraft Corporation 970° East Central Wichita, Kansas 67201 ATTN: William M. Byrne, Jr. Bell Aerospace Company P. O. Box 1 Buffalo, New York 14240 ATIN: Dr. John H. Morgenthaler C-84 Bell Aerospace Company Advanced Technology Research P. O. Box 1 Buffalo, New York 14240 ATTN: Dr. George Rudinger C-84 Bell Acrospace Company P. O. Box l Buffalo, New York 14240 ATIN: Technical Library Bureau of Mines Bartlesville Energy Research Center Box 1398 Bartlesville, Oklahoma 74003 Convair Aerospace Division Manager of Propulsion P. O. Box 748 Fort Worth, Texas 76101 ATTN: L. H. Schreiber Cornell Aeronautical Laboratory, Inc. Aerodynamic Research Department P. O. Box 235 Buffalo, New York 14221 ATTN: Dr. John W. Daiber Esso Research and Engineering Company Government Research Laboratory P. O. Box 8 Linden, New Jersey 07036 ATTN: Dr. William F. Taylor Senior Research Engineer Fairchild Industries Fairchild Republic Division Farmingdale, New York 11735 ATTN: Engineering Library Flame Research, Inc. P.O. Box 10502 Pittsburgh, Pennsylvania 15235 AffN. Dr. John Manton Forest Fire and Engineering Research Pacific Southwest Forest & Range Experiment Station P. O. Box 245 Berkeley, California 94701 ATTN: Assistant Director Garrett Corporation AiResearch Manufacturing Company Sky Harbor Airport 402 South 36th Street Phoenix, Arizona 85034 ATTN: Mr. Aldo L. Romanin, Manager Aircraft Propulsion Engine Product Line General Dynamics Electro Dynamic Division P. O. Box 2507 Pomona, California 91766 ATTN: Library MZ 6-20 General Dynamics P. U. Box 748 Fort Worth, Texas 76101 ATTN: Technical Library Mail Zone 2246 General Electric Company AEG Technical Information Center Mail Drop N-32, Building 700 Cincinnati, Ohio 45215 ATTN: J. J. Brady General Electric Space S. .nces Lab Valley Forge Space Tech. Center Room 4-9144 P. O. Box 8555 Philadelphia, Pennsylvania 19101 ATTN: Dr. Theodore Baurer General Motors Corporation Detroit Diesel-Allison Division P. O. Box 894 Indianapolis, Indiana 46206 ATTN: Mr. Hillard E. Barrett, Chief Engineer, Advanced Development Mail Stop U-27 ueneral Motors Technical Center Director, Passenger Car Turbine Dev. General Motors Engineering Staff Warren, Michigan 48090 ATTN: 1. F. Nagey Grunman Aerospace Corporation Manager Space Vehicle Development Bethpage, New York ATIN: Mr. O. S. Williams Mr. Daniel E. Barshman 11131 Embassy Drive Cincinnati, Ocio 45240 the second of the state Hercules Incorporated Allegany Ballistics Laboratory P. O. Box 210 Cumberland, Maryland 21502 ATTN: Mrs. Louise S. Derrick Librarian Hercules Incorporated P. O. Box 98 Magna, Utah 84044 ATTN: Library 100-H A/S Kongsberg Vaapenfabrikk Gas Turbine Division 3601 Kongsberg, Norway ATTN: R. E. Stanley Senior Aerodynamicist LTV Vought Aeronautics Company Flight Technology, Project Engineer P. O. Box 5907 Dallas, Texas 75222 ATTN: Mr. James C. Utterback Lockheed-Georgia Company Dept. 72-47, Zone 259 Marietta, Georgia 30060 ATTN: William A. French Lockheed Missiles & Space Company 3251 Hanover Street Palo Alto, California 94304 ATTN: Palo Alto Library 52-52 Lockheed Propulsion Company Scientific and Technical Library P. O. Box 111 Redlands, California 92373 ATTN: Head Librarian Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico 97544 ATIN: J. Arthur Freed The Marquar 't Company CCI Aerospace Corporation 16555 Saticoy Street Van Nuys, California 91409 ATTN: Library Martin-Marietta Corporation P. O. Box 179 Denver, Colorado 90201 ATTN: Research Library 6617 Martin-Marietta Corporation Orlando Division P. O. Box 5837 Alando, Florida 32805 ATTN: Engineering Library, mp-30 McDonnell Aircraft Company P. O. Box 516 St. Louis, Missouri 63166 ATTN: Research & Engineering Library Dept. 218 - Bldg. 101 McDonnell Douglas Corporation Project Propulsion Engineer Dept. 243, Bldg. 66, Level 2S P. O. Box 516 St. Louis, Missouri 63166 ATIN: Mr. William C. Patterson McDonnell Douglas Corporation Research Laboratories St. Louis, Missouri 63166 ATIN: Miklos Sajben Associate Scientist McDonnell Douglas Astronautics Company 5301 Bolsa Avenue Huntington Beach, California 92647 ATIN: A3-328 Technical Library Services National Research Council Division of Mechanical Engineering Montreal Road, Ottawa Ontario, Canada KIA OR6 ATTN: Dr. R. B. Whyte Nielsen Engineering & Research, Inc. 850 Maude Avenue Mountain View, California 94040 ATIN: Dr. Jack N. Nielsen Nissan Motor Company, Ltd. 3-5-1, Momoi, Suginami-ku Tokyo, Japan 167 ATTN: Dr. Y. Toda Northrop Corporation Ventura Division 1515 Rancho Conejo Boulevard Newbury Park, California 91230 ATTN: Technical Information Center Norwegian Defense Research Establishment Superintendent NDRE P. O. Box 25 2007 Kjeller, Norway ATIN: Mr. T. Krog MERA Energie and Propulsion 29 Avenue de la Division Leclure 92 Chatillon sous Bagneux, France ATTN: Mr. M. Barrere ONERA Energie and Propulsion 29 Avenue de la Division Leclure 92 Chatillon sous Bagneux, France ATIN: Mr. J. Fabri ONERA Energie and Propulsion 29 Avenue de la Division Leclure 92 Chatillon sous Bagneux, France ATIN: Mr. Viaud Professor K. Papailiou Residence les Closeaux, #21 109, Route de Morsang 91, Saintry, France Mr. J. Richard Perrin 16261 Darcia Avenue Encino, California 91316 Philco-Ford Corporation Aeronautic Division Ford Road Newport Beach, California 92663 ATTN: Technical Information Service Pratt and Whitney Aircraft Project Engineer, Advanced Military Engineering Dept. - 2B East Hartford, Connecticut 06108 ATTN: Mr. Donald S. Rudolph Pratt and Whitney Aircraft Division United Aircraft Company 400 S. Main Street East Hartford, Connecticut 06108 ATTN: Mr. Dana B. Waring Manager-Product Technology Pratt and Whitney Aircraft Program Manager, Advanced Military Eng. Engineering Department - 2B East Hartford, Connecticut 06108 ATIN: Dr. Robert I. Strough Pratt and Whitney Aircraft Florida Research and Development Ctr. P. O. Rox 2691 West Palm Beach, Florida 33402 ATTN: Dr. Richard A. Schmidtke - B60 Senior Program Manager RCA Corporation Missile and Surface Radar Division Moorestown, New Jersey 08057 ATTN: Engineering Library Bldg. 101-222 Rocket Research Corporation 11441 Willow Road Redmond, Washington 98052 ATTN: Thomas A. Groudle Rocketdyne Division North American Rockwell 6633 Canoga Avenue Canoga Park, California 91304 ATTN: Technical Information Center D/596-108 Rocketdyne Division North American Rockwell 6633 Canoga Avenue AA67 Canoga Park, California 91304 ATTN: Mr. Henry C. Wieseneck Manager Rohr Corporation Manager Advanced Technology Engineering Division Chula Vista, California 92012 ATIN: Mr. Joseph S. Mount Sandia Laboratories P. O. Box 969 Livermore, California ATIN: Dr. Dan Hartley, Div. 8351 Sandia Laboratories P. O. Box 5800 Albuquerque, New Mexico 8/115 ATTN: Technical Library, 3141 Solar 2200 Pacific Highway San Diegn, California 92112 ATTN: Librarian Standard Oil Company (Indiana) P. O. Box 400 Naperville, Illinois 60540 ATTN: R. E. Pritz Teledyne CAE 1330 Laskey Road Toledo, Ohio 43601 ATTN: Technical Library TRW Systems One Space Park Bldg. 0-1 Room 2080 Redondo Beach, California ATTN: Mr. Donald H. Lee, Manager TRW Systems One Space Park Redondu Beach, California 90278 ATTN: Mr. F. E. Fendell (R1/1004) United Aircraft Research Laboratory 400 Main Street East Hartford, Connecticut 06108 ATTN: Dr. Frank Carta United Aircraft Research Laboratory 400 Main Street East Hartford, Connecticut 06108 ATTN: Librarian Valley Forge Space Tech. Center P. O. Box 8555 Philadelphia, Pennsylvania 19101 ATTN: Dr. Bert Zauderer Vought Missiles & Space Company P. O. Box 6267 Dallas, Texas 75222 ATTN: Library - 3-41000 #### UNIVERSITIES AND
INSTITUTES Polytechnic Institute of Brooklyn Department of Aerospace Engineering and Applied Mechanics Brooklyn, New York ATTN: Dr. Samual Lederman Brown University Division of Engineering Box D Providence, Rhode Island 02912 ATTN: Dr. R. A. Dobbins California Institute of Technology Department of Chemical Engineering Pasadena, California 91109 ATIN: Prof. W. H. Corcoran California Institute of Technology Jet Propulsion Laboratory 4800 Oak Grove Dirve Pasadena, California 91103 ATTN: Library University of California, San Diego Dept. of Aerospace and Mechanical Engineering La Jolla, California ATIN: Professor Paul Libby University of California, San Diego Dept. of Engineering Physics P. O. Box 109 La Jolla, California 92037 ATTN: Professor S. S. Penner University of California School of Engineering and , Applied Science 7513 Boelter Hall Los Angeles, California 90024 ATTN: Engineering Reports Group University of California Lawrence Radiation Laboratory P. O. Box 808 Livermore, California 94550 ATIN: Technical Information Dept. L-3 University of California ¹ General Library Berkeley, California 94720 ATIN: Documents Department Case Western Reserve University 10900 Euclid Avenue Cleveland, Onio 44106 ATIN: Sears Library - Reports Dept. Case Western Reserve University Division of Fluid, Thermal and Aerospace Sciences Cleveland, Uhio 44106 ATIN: Professor Eli Reshotko tolorado State University Engineering Research Center Fort Collins, Colorado 80521 ATTN: Mr. V. A. Sandborn The University of Connecticut Department of Aerospace Engineering Storrs, Connecticut 06268 ATTN: Ur. P. Frank Hodnett Associate Professor Cooper Union School of Engineering and Science Cooper Square New York, New York ATTN Dr. Wallace Chintz Associate Professor of ME Cornell Aeronautical Laboratory, Inc. 4455 Genessee Street Buffalo, New York 14221 ATTN: Head Librarian Cornell University Department of Chemistry Ithaca, New York 14850 ATTN: Prof. Simon H. Bauer Technical University of Denmark Fluid Mechanics Department Building 404 2800 Lyngby DK-Denmark ATTN: Professor K. Refslund Franklin Institute Research Laboratories Philadelphia, Pennsylvania 19103 ATIN: Dr. G. P. Wachtell Fysisch Laboratorium Fijksuniversiteit Utrecht Sorbonnelaan Utrecht, 'The Netherlands ATTN: Dr. F. van der Valk Georgia Institute of Technology Atlanta, Georgia 30332 ATTN: Price Gilbert Memorial Library Georgia Institute of Technology' School of Aerospace, Engineering 'Atlanta, Georgia 30332 ATTN: Dr. Ben T. Zinn Professor University of Illinois Department of Energy Engineering Box 4348 Chicago, Illinois 60680 ATTN: Professor Paul H. Chung University of Illinois College of Engineering Dept. of Energy Engineering Chicago, Illinois ATTN: Dr. D. S. Hacker Imperial College ' London, England ATTN: Professor Gaydon Imperial College of Science & Technology Department of Mechanical Engineering Exhibition Road London, S.W.7, England ATTN: Professor W. Murgatroyd The Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland 20910 ATTN: Chemical Propulsion Information Agency The Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland 02910 ATIN: Document Librarian The Johns Hopkins University Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland 20910 ATTN: Dr. A. A. Westenberg University of Leeds Leeds, England ATTN: Professor Dixon-Lewis Massachusetts Institute of Technology Dept. of Chemical Engineering Cambridge, Massachusetts 02139 ATTN: Dr. Jack B. Howard Massachusetts Institute of Iechnology Department of Chemistry, Room 6-123 Cambridge, Massachusetts 02139 ATTN: Dr. John Ross MIT Libraries Room 14 E-210 77 Massachusetts Avenue Cambridge, Massachusetts ₍02139 ATTN: Technical Reports Massachusetts Institute of Technology Room 10-408 Cambridge, Massachusetts 02139 ATTN: Engineering Technical Reports Massachusetts Institute of Technology Dept. of Mechanical Engineering Room 3-246 Cambridge, Massachusetts 02139 | ATTN: Professor James Fay Massachusetts Institute of Technology Dept. of Mechanical Engineering Cambridge, Massachusetts 02139 ATTM: Prof: Robert E. Stickney. University of Michigan Department of Aerospace Engineering Ann Arbor, Michigan 48105 ATTN: Prof. T. C. Adamson, Jr. Midwest Research Institute 425 Volker Boulevard Kansas City, Missouri 64100 ATTN: Dr. I. A. Milne Mitglied des Vorstands der Fried. Krumpp GmbH 43 issen, Altendorferstraße 108 Germany ATIN: Professor Dr.-Ing. Wilhelm Dettmering New York Institute of Technology Wheatley Road Old Westbury, New York \$1568 ATTN: Dry Fox University of Notre Dame College of Engineering Notre Dame, Indiana 46556 ATIN: Stuart I. McComas, Asst. Dean for Research & Special Projects Ohio State University Dept. of Chemical Engineering 140 West 19th Avenue Columbus, Ohio ATIN. Dr. Robert 5. Brooky The Pennsylvania State University Room 207 Old Main Building University Park, Pennsylvania 16892 ALIN: Office of Vice President for Research Pennsylvania State University : 1 College of Engineering University Park, Pennsylvania 16802 ATTN: Dr. Otis I, Lamaster : Prof. of Engineering Education Institute Politechnico Nacional Unidad Profesional de Zecatenco Mexico 14, D. V. Mexico ATTN: Ing. Manuel Zorr 11a Director Gineral Princeton University Dept. of Aerospace and Mech. Sciences James Forrestal Campus Princeton, New Jersey (08540 ATTN: Dr. Martin Summerfield Princeton University Forrestal Campus Library P. O. Box 710 Princeton, New Jersey 08540 ATTN: V. N. Simosko, Librarian Purdue University School of Hechanical Engineering Lafayette, Indiana 47907 ATIN: Prof. V. W. Goldschmidt Purdue University School of Mechanical Engineering Lafayette, Indiana 47907 ATTN: Professor S. L. K. Wittig Purdue University School of Aeronautics, Astronautics, and Engineering Sciences Lafayette, Indiana 47907 ATTN: Library Queen Mary College Dept. of Mechanical Engineering Thile Eld Road London El, England ATIN: Professor M. W. Thring Rice University Welch Professor of Chemistry Houston, Texas 77001 ATTN: Dr. Joseph L. Franklin University of Rochester Department of Chemical Engineering Rochester, New York 14627 ATTN: Dr. John R. Ferron Rome University Via Bradano 28 00199 Rome, Italy ATTN: Prof. Gaetano Salvatore Sophia University Science and Engineering Faculty Kioi 7 Tokyo-Chiyoda Japan'102 ATTN: Professor H. Suzuki Stanford Research Institute Dept. of Chemical Dynamics Menlo Park, California 94025 ATIN: Dr. Henry Wise Stanford University Dept. of Aeronautics and Astronautics Stanford, California 94305 ATTN: Dr. Walter G. Vincenti Stanford University Dept. of Mechanical Engineering Stanford, California 94305 ATTN: Professor A. L. London Stevens Research Institute Castle Point Station Hoboken, New Jersey 07030 ATTN: Prof. Robert F. McAlevy III Combustion Lab Director University of Tokyo Dept. of Reaction Chemistry Faculty of Engineering Bunkyo-ku Tokyo, Japan 113 ATTN: Professor T. Hikita University of Virginia Dept. of Aerospace Engineering School of Engr. 2nd Applied Science Charlottesville, Virginia 22901 ATTN: Dr. John E. Scott University of Virginia Science/Technology Information Center Charlottesville, Virginia 22901 ATIN: Richard H. Austin Virginia Polytechnic Institute and State University Dept. of Aerospace Engineering Blacksburg, Virginia 24061 ATTN: Dr. Geruge R. Inger Virginia Polytechnic Institute and State University Mechanical Engineering Dept. Blacksburg, Virginia 24061 ATTN: Mr. Walter S. O'Brien, Jr. The George Washington University Washington, D. C. 20006 ATTN: Reports Section Yale University Engineering and Applied Science Mason Laboratory Hew Haven, Connecticut 06520 ATTN: Dr. John B. Fenn Yale University Hason Laboratory 400 Temple Street New Haven, Connecticut 06520 ATTN: Prof. Peter P. Wegener 38